

JNTRES

User's Manual

CONTENTS:

1	IN	TRODUCTION	
2	RU	UNNING JNTRES	
	2.1	INPUT PARAMETERS	
	2.2 2.3	NORMAL OUTPUT (ULTIMATE CAPACITY ASSESSMENT) SPECIAL OUTPUT (SCREENING OF UTILIZATION)	
3	EX	XAMPLES	7
	3.1	NORMAL ULTIMATE CAPACITY ASSESSMENT	
4	5.2 LII	SPECIAL SCREENING OF UTILIZATION	

1 Introduction

JNTRES is a simple tool, which is available for free for the users of Usfos. The tool is used to extract and print joint results from an Usfos analysis, and the results are taken from the "RAF" file.

The tool is found on the web (<u>www.usfos.com</u> under download modules). JNTRES is available on the following computer platforms:

- □ Windows
- □ Linux 64 bit
- □ Mac OSX

JNTRES is under development and at present, only beta versions (0.9-X) are available. This document is based on JNTRES version 0.9-5, August 2013.

2 Running JNTRES

Output file name

The most efficient way to run JNTRES is from a command shell (DOS or Unix).

By just typing *jntres*, the tool starts and asks for the following information:

- Raf file name (including file extension)
 - (to print the actual data)
- Step number and some optional parameters

_____ ____ JOINT RESULTS ----____ ---- Results from Usfos CHJOINT elements ----____ ____ Version 0.9-5/ Aug, 05, 2013 ____ ____ Usfos AS ____ ____ ____ _____ _____ Give RAF File Name Prefix : res Give Output File Name : jntres.txt Give Stored Step Number /all/ : Dump of curves ? / NO/ : Joints exceeding specified Limit ?

Table 2-1 Running JNTRES from a simple command shell

JNTRES could also be run from the Usfos GUI (Run Utilities), and the user gives the same input information.

2.1 Input parameters

The five input parameters are explained in Table 2-2. If the default parameters are used, only the two first parameters (raf- and output) need to be specified. For the remaining 3, the defaults are selected by just hitting the "enter" button, (i.e. blank).

Input/option	Comments
Raf file name prefix	 USFOS result database. Either : 1. file name (if JNTRES is activated from the same file folder as the raf file is stored), or 2. full path. For example: res /tmp/scratch/res
Output file name	Complete file name for result printing. For example: jntres01.txt
Stored step	JNTRES goes trough all steps up to the specified step. NOTE. Specify <i>stored</i> step number (not analysis step). F example, if the default storing is used, USFOS will store every 10 th analysis step: 1, 10, 20, 30, 40, etc. For example will <i>stored</i> step no 2 mean analysis step 10, stored step no 3 means analysis step 20, etc. By default, all steps are used, (i.e. up to last stored step).
Dump of curves	Continuous updated <i>axial</i> strength curves are dumped after the result print (on same line). The curve contains 13 points, and this means 26 extra columns. Default OFF
Joints exceeding	Special use. F example for screening of elastic analysis, where certain utilization level is used for sorting the data. Default off.

Table 2-2 - JNTRES input parameters and options.

2.2 Normal output (ultimate capacity assessment)

The contents of the output file depend on choice of input parameters. The normal *) output has 3 main blocks of data:

Output Blocks	Comments
Block-1: Heading and key results	Contains: JNTRES version USFOS analysis status Processed date Input raf file Number of connections Last used step (stored step is converted to USFOS analysis step in the print)
Block-2: Joint capacity summary	 Connections are <i>sorted</i> for the following <i>axial</i> force response: Exceeding axial ductility limit Exceeding peak axial force Exceeding first yield Elastic connections The printed utilizations are always based on <i>all</i> force components (axial + in&out-of plane bending). See Table 3-3 for description of the groups.
Block-3: Detailed connection-by- connection print.	The history of each connection is printed, with or without the capacity curve printed at the end of each line.

Table 2-3 - JNTRES output blocks. Normal ultimate capacity.

*) "Normal" means that focus is set on the **axial** force-displacement development (ductility) of each connection. The force-displacement curves are defined by the codes (ISO, API, NORSOK).

2.3 Special output (screening of utilization)

USFOS used for special analysis, (for example dynamic analysis of a jacket transport), a different output could be useful. By specifying: "yes" on parameter no 5, ("joints exceeding"...), the user could specify a certain target utilization level to be used in the screening.

All output is based on utilization levels, (and not on ductility levels).

Output Blocks	Comments
Block-1: Heading and key results	Same as "normal output"
Block-2: Joint utilization summary	 Connections are sorted as follows: Max utilization for connections exceeding the specified target utilization level. Max utilization for connections below the specified target utilization level.
Block-3: Sorted print	Sorted print of all connections. Both absolute utilization and relative (to the specified target utilization).

 Table 2-4 - JNTRES output blocks. Special screening of utilization levels.

3 Examples

In the following examples, the joint results for the simple model are printed in different ways. The examples are extracting the joint results from the simple frame shown in Figure 3-1.

Figure 3-1 - Simple Analysis model

3.1 Normal Ultimate Capacity Assessment

In this example the normal (default) output is selected. Raf-file and output file are specified, and the 3 last parameters are left blank (just hitting "enter").

```
_____
_____
-----
____
                            ____
                          ____
____
      JOINT RESULTS
----- Results from Usfos CHJOINT elements ----
                         ____
____
----- Version 0.9-5/ Aug, 05, 2013
                           _____
                           ____
____
          Usfos AS
_____
-----
Give RAF File Name Prefix : res
Give Output File Name : jntres.txt
Give Stored Step Number /all/ :
Dump of curves ? / NO/ :
Joints exceeding specified Limit ?
```

 Table 3-1 - JNTRES prompt

"Block-2" results are shown in Table 3-2 and Table 3-3 explains the different result items.

	Connect	tions Exc	ceeding D	uct Lim	it						
Connection	Node	Brace	LoadCase	StenNo	LoadLevel	IItiliz	Status	PeakAvial	DisplyPeak lyial	Disp	DuctLim
19	7	31	1	40	3 891	1 000	TensFail	1 580E+06	0 006 1 256E+06	1 831E-02	0 009
18	. 6	24	1	50	4 257	1 000	TensFail	2 457E+06	0 007 2 037E+06	2 087E-02	0.011
17	6	21	1	140	6.164	1.000	TensFail	2.448E+06	0.007 2.177E+06	1.564E-02	0.011
	-		_								
	Connect	tions Fx	P	aak Avi							
Connection	Node	Brace	LoadCase	StepNo	LoadLevel	Utiliz	Status	PeakAxial	DispAxPeak Axial	Disp	DuctLim
9	11	23	1	90	5.761	1.000	CompPlast	7.862E+06	0.043 7.834E+06	4.401E-02	0.396
15	13	44	1	170	6.122	0.958	CompPlast	4.011E+06	0.019 3.804E+06	1.964E-02	0.396
7	3	43	1	180	6.407	1.000	TensPlast	5.887E+06	0.015 5.810E+06	1.652E-02	0.069
	Connect	tions exc	ceeding F	irst Yi	eld						
Connection	Node	Brace	LoadCase	StepNo	LoadLevel	Utiliz	Status	PeakAxial	DispAxPeak Axial	Disp	DuctLim
20	7	34	1	20	1.999	0.750	TensYield	1.580E+06	0.006 1.186E+06	1.386E-03	0.006
3	2	22	1	60	4.556	0.550	CompYield	1.008E+07	0.032 5.541E+06	7.472E-03	0.032
5	2	52	1	60	4.556	0.646	TensYield	4.096E+06	0.014 2.632E+06	3.031E-03	0.014
6	3	32	1	60	4.556	0.599	CompYield	7.445E+06	0.026 4.432E+06	6.669E-03	0.026
12	12	33	1	60	4.556	0.575	CompYield	7.731E+06	0.023 4.445E+06	6.470E-03	0.023
13	12	52	1	60	4.556	0.681	TensYield	3.887E+06	0.015 2.632E+06	4.402E-03	0.015
N	dax Utili:	z tor Ela	astic Con	ection	s						
Connection	Node	Brace	LoadCase	StepNo	LoadLevel	Utiliz	Status	PeakAxial	DispAxPeak Axial	Disp	DuctLim
1	1	21	1	40	3.891	0.268	TensElast	9.148E+06	0.070 2.449E+06	3.798E-03	0.087
2	1	51	1	200	6.414	0.229	TensElast	3.881E+06	0.070 1.127E+04	4.424E-05	0.087
4	2	31	1	30	2.994	0.204	TensElast	7.711E+06	0.018 1.569E+06	1.562E-03	0.030
8	3	53	1	90	5.761	0.558	TensElast	3.401E+06	0.022 1.866E+06	3.238E-03	0.054
10	11	51	1	200	6.414	0.241	TensElast	3.891E+06	0.013 1.127E+04	4.444E-05	0.030
11	12	24	1	190	6.419	0.508	TensElast	8.777E+06	0.028 2.313E+06	2.737E-03	0.067
14	13	34	1	30	2.994	0.207	TensElast	7.568E+06	0.018 1.564E+06	1.680E-03	0.033
16	13	53	1	90	5.761	U.468	TensElast	4.019E+06	U.U12 1.866E+06	1.729E-03	0.030

 Table 3-2 - JNTRES
 result overview ("block-2").
 Normal Ultimate Capacity.

Comments to the results:

Grouping	Explanation
Exceeding Duct Limit	Axial displacement exceeds the ductility limit. The instantaneous ductility limit is printed under "ductlim".
Exceeding Peak Axial	Axial force exceeds the peak. The instantaneous peak axial capacity is printed under "PeakAxial".
Exceeding First Yield	Axial force exceeds the proportion limit, which typically is set to 60% of the axial peak capacity.
Elastic Connections	Maximum utilization for connections, which has not reached the proportional limit (see above)

 Table 3-3
 Grouping of jntres result overview. Normal Ultimate Capacity.

3.2 Special screening of utilization

In this example special output is selected. Raf-file and output file are specified, and the 2 next parameters are left blank (just hitting "enter"). "Yes" is answered on parameter number 5, and it is asked for the "utilization limit" to be used in the screening.

The default limit is set to 0.8, because this is a good estimate on conventional joint checking.

In the actual example, the target utilization is set to 0.6.

Table 3-4 - JNTRES prompt. Special use.

In this example, a dynamic analysis is performed, and "time" is printed instead of "load level".

The "sorted print" presents both the absolute utilization and a relative level. The relative level is computed as 100 % x (absolute) / (target utilization).

N	Max Utili:	z for Connec	tions exceedi	ng					
	Utiliza	ation Limit	0.600						
Connection	Node	Brace	StenNo	Time	IItiliz Status	DeakAvial	DienAvDeak	Avial	Dien
17	6	21	10	1.000	0.891 Tension	2.457E+06	0.007	2.191E+06	2.222E-03
18	6	24	11	1.100	0.893 Tension	2.457E+06	0.007	2.194E+06	2.250E-03
19	7	31	19	1.900	0.995 Tension	1.578E+06	0.006	1.570E+06	3.964E-03
20	7	34	10	1.000	0.991 Tension	1.580E+06	0.006	1.566E+06	3.668E-03
N	Max Utili:	zation for C	onnections wi	th					
T	Jtilizatio	on Less than	limit: 0.60	0					
Connection	Node	Prace	StopNo	Timo	Utilia Statuc	DeakAvial	DicnAvDeak	Avial	Dico
1	1	21	11	1 100	0 240 Tension	9 148F+06	0 070	2 190F+06	3 373F-03
2	1	51	15	1 500	0.001 Tension	3 881F+06	0.070	1 001F+03	3 9398-06
2	2	22	11	1 100	0 231 Compress	9 845F+06	0.070	2 275E+06	3 3438-03
4	2	31	15	1 500	0 204 Tension	7 711E+06	0.018	1 571F+06	1 602E-03
5	2	52	10	1 000	0.048 Tension	4 111E+06	0.014	1 943E+05	2 488E-04
6	3	32	11	1 100	0 275 Compress	7 663E+06	0 028	2 105E+06	3 206E-03
7	3	43	15	1.500	0.168 Tension	1.239E+07	0.020	2.080E+06	1.419E-03
8	3	53	10	1.000	0.020 Tension	3.946E+06	0.013	7.821E+04	1.309E-04
9	11	23	11	1.100	0.280 Compress	8.113E+06	0.045	2.274E+06	4.811E-03
10	11	51	15	1.500	0.001 Tension	3.744E+06	0.070	1.000E+03	3.937E-06
11	12	24	11	1.100	0.225 Tension	9.754E+06	0.021	2.195E+06	1.987E-03
12	12	33	11	1.100	0.278 Compress	7.595E+06	0.028	2.108E+06	3.382E-03
13	12	52	10	1.000	0.051 Tension	3.891E+06	0.017	1.943E+05	3.249E-04
14	13	34	15	1.500	0.207 Tension	7.563E+06	0.018	1.566E+06	1.745E-03
15	13	44	11	1.100	0.128 Compress	1.243E+07	0.032	1.589E+06	1.803E-03
16	13	53	10	1.000	0.019 Tension	4.222E+06	0.015	7.809E+04	1.327E-04

 Table 3-5 - JNTRES result overview ("block-2"). Special screening of utilization.

P	bsolute a	r all conn and relati	ections. ve	
onnection	Node	Brace	Utiliz	Relative to 0.60
19	7	31	0.995	165.8 %
20	7	34	0.991	165.2 %
18	6	24	0.893	148.8 %
17	6	21	0.891	148.6 %
9	11	23	0.280	46.7 %
12	12	33	0.278	46.3 %
6	3	32	0.275	45.8 %
1	1	21	0.240	39.9 %
3	2	22	0.231	38.6 %
11	12	24	0.225	37.5 %
14	13	34	0.207	34.5 %
4	2	31	0.204	34.0 %
7	3	43	0.168	28.0 %
15	13	44	0.128	21.3 %
13	12	52	0.051	8.5 %
5	2	52	0.048	8.0 %
8	3	53	0.020	3.4 %
16	13	53	0.019	3.1 %
10	11	51	0.001	0.2 %
2	1	51	0.001	0.2 %

 Table 3-6 - JNTRES result overview ("block-3"). Sorted print.

JSFOS Engineering

4 Limitations

JNTRES needs results, which are created by USFOS version 8-6 and later versions. For version 863 and higher, the ductility limit is printed in addition.

All sorting of ductility (normal output) are based on the axial component only. Therefore, the *ductility* option in JNTRES is not suited for sorting of joints dominated by bending.