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1. INTRODUCTION

1. 1 General

The implementation of accidental loads as a design load category in offshore 
rules /I/ has strengthened the need for rational tools for accidental load 
effect analysis. In design and operation of the structure it is of interest to 
know the amount of damage as well as the residual strength in damaged condition.

Related to the prediction of damage due to impact loading a new design 
philosophy is developed in the sense that structural capacity is given as energy 
absorbtion capability rather than as ultimate load. The DnV rules for mobile 
offshore units /2/ specify 14 MJ (Mega Joule) as impact energy for beam 
collision and 11 MJ for bow or stern collision, corresponding to a supply vessel 
of 5000 tonnes displacement with impact speed 2.0 ms"1.

The extent of damage caused by accidental loads ranges from total collapse of 
the structure to small damages which may not have serious consequences at the 
time of accident. However, such a small damage may effect the ability of the 
structure to withstand extreme loads, thus having an influence on the safety. 
Newer general structural design codes inlcude a progressive collapse limit state 
/3/. The philosophy behind this design limit state is to assure that a 
structural system has sufficient resistance to tolerate some local damage 
without catastrophic consequences.

Fjeld /4/ has presented the philosophy of limit state of progressive collapse 
for fixed offshore structures. However, accidental loads are covered only to a 
small extent in present codes. The British rules /5/ assume that the 
conventional types of structures have sufficient extra resistance to sustain 
accidental loads while the American Petroleum Institute code /6/ contains no 
criteria on accidental loads. The regulations for fixed platforms by the 
Norwegian Petroleum Directorate /7/ require the residual strength to be checked 
in damaged condition. Local damage is accepted in case of sufficient post­
damage capacity. The Norwegian Maritime Directorate has started a major research 
project to improve the ability to do a rational design against accidental loads



on mobile platforms. The first results from this project have already been 
given /8/. This presentation describes a procedure for progressive collapse 
strength evaluation.

In the case of damage of a bracing element in an offshore structure, the 
simplest procedure for checking residual strength would be to eliminate the 
damaged element from the structural frame model and to perform a new linear 
analysis of nominal stresses. However, such an analysis is conservative in the 
sense that the post-damage strength of the damaged element is neglected together 
with the effects of stress redistribution in the structure. These factors can 
only be taken care of by an elasto-plastic large displacement type of analysis.

The choice of design impact situations must be done under consideration of 
probability of occurrence /9/. The size of design vessel is to be determined on 
the basis of the vessels intended to operate in the area, such as service 
vessels, tankers for offshore loading and by-passing ships.

1.2 Previous Work on the Idealized Structural Unit Method

Ueda and Rashed /10/ have described a procedure which combines plastic methods 
of structural analysis with local buckling of web for ultimate strength analsyis 
of transverse frames in ship structures. Rashed /II/ has extended this 
procedure, called the Idealized Structural Unit Method (ISUM), to be used for 
ultimate strength analysis of tubular frame structures. The beam-column 
behaviour of slender members is taken care of by using an element stiffness 
formulation presented by Livesley /12/, where the stiffness terms are nonlinear 
functions of the axial force. Plastic hinges are introduced at locations where 
the element cross section reaches its ultimate capacity. The stiffness matrix 
is modified to account for the plastic hinge, and the load increased until the 
next cross section reaches its ultimate capacity. This prosess continues until 
a complete mechanism is formed and the load cannot be increased any further.

The Idealized Structural Unit Methods has been further developed and adopted to 
progressive collapse analysis of mobile offshore platforms /13/. Incremental 
equations are derived from energy potentials by variation of the total energy



and subsequent differentiation of the equilibrium equations /13/. The main 
advantage of the derivation based on energy expressions is that it results in a 
symmetric matrix while the derivation in /II/ from the differential equation 
gave almost identical but nonsymmetric expression.

The structure stiffness matrix is assembled from element stiffnesses calculated 
in an updated geometry. The effect of large nodal point displacements is thus 
included.

The load is applied incrementally. For each load step the structure stiffness 
is assembled and the global displacement increment calculated. The element 
force increment is calculated by using the tangential stiffness matrix and the 
element displacement increment. At each level all elements are checked to see 
whether buckling or plastic capacity has been reached. If such an event is 
predicted the step is reduced to being the response to just reach that event. A 
plastic hinge is introduced in the element at the position where the capacity 
was reached. A modified stiffness matrix accounting for the plastic hinge is 
calculated and the process proceeds to the next load step. A cross section that 
has reached the plastic capacity remains on the plastic interaction surface and 
move tangentially to this surface. The previous formulation does not include 
the possibility of elastic unloading from a plastic stress state.

Buckling is accounted for by standard column buckling strength formula. The 
effective length lfi of the beam-column element depends on the stiffness of 
adjacent elements. Approximate expressions based upon the relative stiffness of 
the adjacent members at each end is used /II/. The effective length calculated 
by this approach will always be less than the actual length of the element. If 
the rigidity in some direction is small at a nodal point this may be completely 
misleading. Fortunately, a criteria for global buckling in most cases will 
detect such type of failure, by checking the incremental stiffness matrix.

Analysis of progressive collapse of structures with dented tubular members /14/ 
has been performed by replacing the dented region by an eccentric circular 
cylinder with requivalent cross section properties.



1.3 Aim of Present Study

1.4

The previous versions of the program USFOS /II, 13/ have worked well for 
problems with moderate nonlinearity. The version in /II/ was capable of 
handling only linear geometry while van Aanhold implemented updating of global 
coordinates and thereby allowed large global deformations. But the program 
still was restricted to linear geometric behaviour on element level. The 
present version has built in large deflection formulation on element level and 
thus allows moderate deflections of elements between nodal points.

This has a major implication on the buckling phenomenon. Buckling is now a 
result of the energy state of the system. Hence, there is no longer need to 
introduce this artificially by comparison with standard column buckling strength 
formula. The event check on element level now only concerns detection of 
plastic hinges.

The step-by-step solution technique has so far been based upon pure Euler-Cauchy 
incrementation. It is the aim of this study to describe the procedure for 
equilibrium iterations based on the residual between external loads and internal 
stress resultants. This modification would also include Euler-Cauchy incre­
mentation with equilibrium correction at each step. The variation foundation of 
the program is also rewritten in the way that it is now totally based upon the 
principle of virtual displacements for equilibrium control. The incremental 
stiffness is derived from the corresponding incremental form of the virtual work 
principle. These new considerations on the variational principles result in 
modifications of the computer program on the calculation of element stiffnesses 
and equilibrium forces.

A new model for dented tubular cross-sections is implemented. It is based upon 
the work of J. Taby /24/. By this model, the local dent is accounted for 
by reducing the plastic capacity of the cross-section. The overall distortion is 
handled as an initial stress free deflection.

A new interaction formula for I-profiles is implemented. The main advantage as 
compared with the previous formulation is its continuity over the entire force



space. A plastic interaction formula for box-sections is also provided.

Finally, a model for temperature loads has been developed. It comprises the 
effects of E-modulus and yield strength degradation and thermal expansion.

The present study ends in a progressive collapse analysis program for frames 
capable of handling large displacements and the formation of plastic hinges.
The element model is parallell to the real structure in the way that one element 
in the numerical model corresponds to one physical bracing element. Hence, the 
problem for the designer to choose a relevant element mesh is eliminated.



2 FUNDAMENTAL CONTINUUM THEORY FOR ELASTIC BEAM

2 . 1

2.1 Large Displacement Theory

The formulation behind the program is valid for large displacements but 
restricted to small strains. This means that second-order effects from dis­
placements are considered, but the structure is so slender that the strains are 
still in the range of some percent.

2.1.1 Description of Motion

Figufe 2.1 Reference system for motion

A spatial Cartesian Coordinate system X^ is given for measuring global 
displacement u. Denoting the initial coordinates of point P by capital 
letters and the current coordinates after deformation by x^ the 
displacement components come out of

xi = Xi + ui (2.1)

In the computer program the coordinates x. are accumulated at each node and 
updated during deformation by Eg. (2.1). The displacements u^ are the



global changes in nodal point coordinates during deformation. The relation 
(2.1) is used for updating the global coordinates of the structure while the 
evaluation of element stiffnesses is first carried out in local element systems 
and thereafter transformed into the common global reference system when 
establishing displacement continuities at nodal points.

2.1.2 Strain Measure

The program is aimed for the analysis of trusses and frames and is restricted to 
uniaxial strain for tubular sections. For I-and box profiles shear strain is 
included.

The Green strain component Ex is derived from the definiton /15/

EX
ds2 - ds 2 ________o_
2ds 2o

(2 .2 )

where dsQ and ds are infinitesimal line segments in initial and current 
configuration, respectively.

From the definition (2.2) it is clear that self-straining at rigid-body motion 
is excluded. Self-straining is further discussed in Section 2.3.3 for incomplete 
strain-displacement relations introduced for the beam elements. It should, how­
ever, be emphasized that by Eq. (2.2) and complete strain-displacement 
expressions self-straining is no problem.

The relation between Green strain and engineering strain

ds-ds„o
ex ~ dso

comes out of Eqs. (2.2 and 2.3) as

For small strains the higher order term in Eq (2.4) may be neglected and Green 
strain and engineering strain coincide.

(2.3)

(2.4)

In subsequent derivations the engineering strain notation t is used.
X



2.3

The strain measure is related to initial length dsQ of the line segment. This 
means that differentiation of shape functions needs to be performed only once in 
intial coordinates and therefore used at each configuration. For linear elastic 
material behaviour, the linear part of the element stiffness matrices is kept 
constant at deformed configurations and only the deflection-dependent stiffness 
terms need be updated.

2.1.3 Stress Measure

The stress tensor energy conjugate to the Green strain tensor is the second
Piola-Kirchhoff stress S. . with uniaxial component S . S.. is13 x 1]
referred to initial volume and along the convective axes. This means that in 
the case of small strain approaches the Cauchy stress in the
directions of the convective axes. This is also seen from energy considerations.

In the subsequent stiffness derivations for small strains no distinction is made
between second Piola-Kirchhoff stress S and Cauchy stress 0. The symbol a is
used in the formulas.

2.2 Strain-Displacement Relations for Beam

The present section gives the basis for establishing strain-displacement 
relations for a beam element. The accuracy and restrictions on the assumed 
relations~are also discussed.



2.4

2.2.1 Reference System

Figure 2.2 Local element xy-system

Fig 2.2 shows the local set of axes x,y for a beam element with the deflected 
element shape dotted. The total displacement of a point P is decomposed into 
axial displacement u(x) and lateral deflection v(x) (and w(x) in three 
dimensions).

The complete expression for strain is subsequently established in local element 
xy-system and the element stiffness is also derived in local system.

2.2.2 Strain-Displacement Relations

The complete expression for Green's strain (or engineering strain for small 
strains) reads /15/

For moderate local deflections on element level ex is simplified into /16/

The inaccuracy introduced by this simplification is discussed in the next 
section. However, it is clear that self-straining is a consequence, and that 
restrictions are put on the magnitude of local rotations related to the line 
between end points of the element.



2.2.3 Comments on the Accuracy of the Strain-Displacement Relations

2.5

dx

Figure 2.3 Rigid body rotation

Consider the infinitesimal element dx in Fig 2.3 subjected to rigid body motion. 
The angle of rotation is denoted a, and under rigid body motion the following 
relations hold /16/

v = sinot (2.7)
f  A

u = cosa - 1 (2.8)i x

Combining Eqs. (2.7 and 2.8) and using series expansion gives

1
. ? ? «* 1 Ou = (1- sin a) - 1 = ~ j  v 2 +f a c, | A

According” to the simplified expression 
straining

1 4
8 v,x (2.9)

2.6 the rigid body motion gives a self-

(2.10)

This artificial strain should be compared to the magnitudes of operating strains 
in the structure. The yield strain for steel is in the range of 0.001 and 
accepting one percent selfstraining gives an allowable rotation v equal

1
v = (8•0.00001)4 = 0.1 radi x

=5.7 degrees
(2 .11)



2.6

With practical slendernesses of bracing elements the above restriction on local 
deformation is considered to be no problem.

2.3 Variational Principles

The present section deals with equilibrium equations between external loads and 
internal stresses on two levels. First, the first variation of potential energy 
(or its equivalent principle of virtual displacements) is used to establish the 
total force equilibrium. This formulation is the basis for the process of 
equilibrium iteration which is carried out between total external loads and 
total internal stresses at each level of loading.

The second variation of potential energy (or its equivalent principle of virtual 
displacements on incremental form) is the basis for calculation of incremental 
stiffness. As it is demonstrated in Section 2.2.2 this procedure is based on a 
linearization of the incremental strain and thus must be completed by 
equilibrium iterations in order to find the true solution.



2.3.1 Principle of Virtual Work

'‘vT*-' u2 1  / r
2

u1

Figure 2.4 Local element displacements

Using the notation in Fig 2.4 for displacements in local element system, the 
internal strain energy for the elastic element reads

where the first integral represent axial straining and the two last integrals 
are the contributions from bending. Torsion is not included.

In Eq. (2.12) comma denotes differentiation with respect to the subsequent 
indice (s).

The potential of external loads is written as

(2 .12)
2dx

1 1 1
H = -(F.U. + ; q -udx + J q •vdx + J q -wdx) 

1 1 o x o y 0 z
The total potential it comes out of

(2.13)

tt = U + H (2.14)



The first variation of internal strain energy is found from Eq. (2.12) as

50 =  ;  E S ( u , x + \ +  1 w2 x ) ( 6u  x  +  V x - 5v  x + w , x  • 6W, X )

+ J El v 5v dx + J El w 5w dxz ,xx ,xx y ,xx ,xx0 ' * 0 
Introducing now the axial force in the element equal to

(2.15)

N = -EA (2.16)

positive for compression, and rearranging Eq (2.15), the first variation of strain 
energy becomes

5U = J EAu 6u dx 
o 'x -x

N+ J El (v 6v - — —  v 8v )dx z ,xx ,xx El ,x , x u z

+ ' EV \ * » c 6“,xx - eT  ",x6w,xidx

(2.17)

- J (N + EAu ) 6u dx 
o ,x ,x

The first term in Eq. (2.17) is the conventional linear contribution from axial 
strain. The two next integrals represent bending deformation including magni­
fication due to axial compression. The corresponding stiffness matrix elements 
are represented by the Livesley's functions /12/. The last integral of Eq. 
(2.17) comes from the nonlinear axial strain contribution from lateral 
deflections v and w. This is seen to give a contribution to the equilibrium 
vector of axial loads in addition to the linear relation EAu,x in the first 
term of Eq. (2.17).

Implementing the following interpolation of element displacements



z.a

u(x) T= ipu ( X)

v(x) T= ip
V

( X)

v(x) it -6 ae 
H

( X)

(2.18)

The first variation of the total potential energy for an elastic element reads
T 1 j

5tt = 6u (/ EA<p <p dx)u
q U f A  U| A

+ 6vT(0X EV \ , xxV xx ' Ei^ V -  lpv,x,dx)v

+ 6wT(J El (tp ipT - ip ipT )dx)w „ y vw,xxvw,xx El ^w,x vw,x 0 z
(2.19)

- 6u (S + |  (N + EA • u )<p dx)u j r* U|*

T T- 5v S - 6w aSv w

2.3.2 Incremental Form of the Virtual Work Principle

The aim of the present section is to come up with incremental load-displacement 
relation for an elastic beam element. The derivation is based upon the 
variational equations in the previous section.

Denote by Au^ the increment in displacement between two adjacent deformed 
congfigufations Cn and . Letting 60 be the variation in strain energy in 
CR the corresponding expression for Cn+  ̂ may be written.

6(U+AU) = J EA (u + Au + \  (v + Av )2 + - (w + Aw )2)
Q J A  f IL 4  | A  , A  &  fA

• (6u (v + Av )6v + (w + Aw )6w )dxI A  f A  | A  f A  fA i A  g A

+ { EIZ<v,xxAv,xx,-5v,xxd’t

(2.20)

+ J EIy(w,xx4w,xx>'6",xxdx

Incorporating 60 from Eg. (2.17) gives



2. 10

fill = 6(U+AU) - 6U 
1

= J EAAu 6u dx 
Q ’x 'x

N+ J El (Av 5v __ ,J z ,xx ,xx El ,x ,x 0 2
Av 6v )dx

+ J El (Aw 6w - =7- Aw 6w )dx JQ Y ,xx / xx EIy »x , x

+ J EA(Au v 6v + Av v 6u )dx
g f A  , A  1 A  / A (2 .21)

+ / EA(Au w 6w + Aw w 6u )dx
Q t A  I A  t A  f A

+ J EA(Av v 6v )dxg I *•

+ J EA(Aw w 6w )dxg I * # * I X

+ J EA(Av v w 6w + Aw w v V6v )dxg #A fA fA iA f * »A rA

+ higher order terms of Av and Aw . These are neglected.f X | X

The corresponding variation of the increment in external potential gets the form

1 1 1
5AH = - AF.6u. - J Aq 6udx - J Aq 6vdx - J1 Aq 6wdx (2.22)1 1  x y . z0 0 0

• V

The incremental stiffness matrix is obtained by incorporating interpolation of 
element displacements. It is seen from Eq. (2.21) that this procedure results 
in a symmetric incremental stiffness matrix.

2.4 Initial Stress Free Deflections 

2.4.1 Effective Strain

In the case of initial stress free deflections the strain ex in Eq. (2.6) 
is modified into an effective strain as /16/:



2. 11

= e. total initial (2.23)

where e tota-*- is the strain according to Eq. (2.6) with total displacementsX » « | » i
inserted, that means initial plus load-dependent deformations, e 101 ia is the

X
value from Eq. (2.6) with initial displacements inserted.

Using notation v and w for initial deflections and v and w for additional 
deflections, the following relation emerges:

cx = + • v'x + "'x • "'X + 5 v2'x + 1 "2'x (2.241

The first variation of strain e reads
X

6ex = 6u,x + ^'X+ v,x)6v,x + (”'x+ w 'x)6w,x (2.25)

and the increment

Aex = Au'x + (v,x+ v'x)Av'x + (w'x+ w 'x)Aw'x+ \  Av'x2 + 1 Aw'x2 ^.26)

In Eq. (2.25) 6 is the variation symbol and A is the incremental symbol in Eq. 
(2.26).

It is seen in Eqs. (2.25 - 26) that the total slopes (v + v), and (w + w),
X X

come in as the large deflection effects on local element level. It is later 
demonstrated how these geometric terms influence the incremental stiffness 
matrix.

The effect from initial slope on strain increment is illustrated in Fig. 2.5
showing initial configuration C with no initial deflection and C with01 02
intial slope v,x -



2. 12

Figure 2.5 Effect of initial slope on strain

From Eq. (2.24) to Eq. (2.25) only the load-dependent displacements u, v and w 
are varied. It is also clear that from the considerations in Sect. 2.2.3 the 
relations (2.25 - 26) are valid only for moderate rotations due to the von 
Karman simplification eliminating higher order terms of the axial displacement 
from Eq. (2.5) to Eq. (2.6).

A physical illustration of the geometric stiffening from initial lateral 
deflection is given in Fig. 2.6 for a cable element.

i i i i
No lateral stiffness

Figure 2.6 Cable element with lateral load



2.4.2 Modification of Stiffness Matrix

2.13

In the case of initial deflections v(x) and w(x) Eq. (2.12) for elastic strain 
energy turns into

U = 1 f EMu,x + vx - v,x + i,x - w,x + 1 v2 ,x + 1 ,x)2dx

* 5 [ EIz , ’xx2dx + \  I EV " x x 2dx 0 0

(2.27)

The variation 6(U + AU) reads

6(U + AU) = J EA(u,x + Au,x + v,x*(v,x + Av,x) + w,x ' (w,x+ Aw#x)

+ 1 (v'x + 4v’x>2 + 5 <”'x+ Aw’x )2'
(2.28)

+ (6u,x+ (v,x+ v;x+ Av,x)5v,x + (w,x+ wix+ Aw,x)6w,x} ■ dx

+ J EV v'xx+ Av'xx> ' 6v'xxdx + t EIy(“'xx+ A"'xx1 ' 5“'xxdx 0 O ' 1

and the stiffness terms of Eq. (2.21) get the form

6AU = 6(U + AU) - 6U

= J EAAu, 6u, dx 
0 x x

+ /. El (Av, • 6v,, N Av, • 8v , )dx„ z 'xx 'xx El 'x 'x 0 z

+ { EV 4w-xx' 5w'xx - i r  Aw'xx' 5w-xx)dx o ■* y

+ J EA(Au,x - (v,x+ v,x) • 6v,x+ Av,x - (v,x+ v(j{) 8u, }dx
A

(2.29)

+ J EA(Au,x - (w,x+ w,x) • 6w,x+ Aw,x - (wIj£+ w,x) • 8u,x)dx

+ J EA-(Av,x -(v,x+ v,x) -8v,x)dx
0
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2
+ I EA-{Aw,x -(w,x+ w,x)2 -6w,x}dx 

2
+ / EA•{Av,x•(v(x+ v'x)'(w'x+ w 'x)dw,x

+ Aw,x (w,x+ w,x)-(v,x+ v,x)dv,x}dx 

+ higher order terms of Av, and Aw, .
X X

The variation of increment in external potential comes out on the same form as 
in Eq. (2.22). The conclusion from these considerations is that the initial 
deflections affect the incremental stiffness. However, the correct values are 
obtained by using the total deflection (initial + additional) in the nonlinear 
expressions.

Again, it ought to be emphasized that the derivations are valid for moderate 
rotations.
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3 Plastic Hinges

3.1 Basic assumptions

The present chapter deals with the theoretical formulation for the modification 
of flow theory of plasticity to application on M/N type interaction curves 
instead of 0 type yield functions. The chapter also deals with some problems 
associated with numerical implementation of the modified flow theory.

In the conventional flow theory of plasticity three basic assumptions are made.

a. There exists an initial yield condition which in stress space can be 
illustrated by an initial yield surface.

b. There exists a flow rule relating plastic strain increment to stress 
increment

c. A hardening rule is defined relating the translation of the yield surface to 
the amount of plastic deformation.

3.2 Elastic-Perfectly-Plastic Model

In this case the first condition above is expressed by the interaction formula
of the crfoss section in the way

These are

(3.1 )

where the parameters are:

N normalized axial force

s2 = — —  = normalized shear force in local y-directiontyAy

USFOS-TM/1992-02-01
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s 3 

s 4 

s 5 

s6

tyAz

Mv
tyWx

M.
OyWy

M,

oywz

= normalized shear force in local z-direction

= normalized torsion moment

= normalized bending moment about local y-axis

= normalized bending moment about local x-axis

Eq. (3.1) defines the plastic state of stress while elastic conditions are 
characterized by

F (s,) < 0 (3.2)

This derivation is restricted to non-hardening materials so that the yield 
surface remains the same throughout plastic deformation. This means that by 
loading from one plastic stress state to another plastic state the following 
equation is valid

dF 0F
6N dN + 6F_

3QV dQv 6F_
3Q, dQ7 0F_

3M„ dML 0F
0M. dM, 0F

0M, dM, 0 (3.3)

which is equivalent to the consistency condition in conventional flow theory for 
non-hardening materials.

It should be emphasized that Eq. (3.3) above as well as other derivations in the 
present section 3.2 are restricted to infinitesimal increments. Modifications 
for finite increments in plastic region are presented in section 4.4.1.

An associated flow rule is applied in the sense that the yield function in Eq. 
(3.1) is used as plastic potential. Denoting by vP the plastic deformation 
vector associated with the plastic hinge, the flow rule reads

3FdvP = dX ■ —  = d i g  (3.4)

USFOS-TM/ 1992-02 -01
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where the vector S contains the section forces at the plastic hinge

S = [N,Qy,Qz,Mx,My,Mz]T (3.5)

The parameter dA in Egs. (3.4) is a non-negative scalar quantity which is zero
0Fat pure elastic deformation and g is the gradient —  to the yield surfaceoS j

On component from Eq. (3.4) may for a typical hinge be written as:

■ "

dup 3F/3N
dup 3F/3Qy
d w p

= d A ■
3F/3QZ

d 0 x P 3F/3MX
d 0 y 3F/3My
d 0 z P 3F/3MZ

_ .

The deformation vector vp is equivalent to conventional strain in the sense 
that it is a deformation measure at the plastic hinge. It gives the adjacent 
displacements between the two sides of the hinge so that rigid body motion of 
the hinge is not making any contribution. An illustration of the exclusion of 
rigid body rotation is given in Fig. 3.1.

Figure 3.1 Elimination of rigid body rotation at plastic hinge

USFOS-TM/ 1992-02-01
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3.3 Elasto-plastic models with strain hardening

The introduction of hardening in the plasticity modelling represents an 
generalization of the deviation in the previous section.

At each state of plastic deformation at the hinge it is postulated that there 
exists a unique yield surface in the normalized force space given by:

Off represents the yield surface offset components in the force space and zy 
denotes the yield surface extension in the normalized force space.

Strain hardening takes place when P(s^) > 0.

The yield surface F(s,) generally depends both on the current state of forces 
and on the displacement history.

In the current formulation kinematic hardening will be assumed, so that the 
extension parameter zy and the shape of the yield surface are kept constant 
while its origo ai is allowed to move. Isotropic hardening, which would imply 
increasing zy, is not considered here.

-Zr

The following formulations will be written on a form using finite increments. 
Consider the stage of loading shown in Figure 3.2

and i = 1,6 (3.7)

where

USFOS-TM/1992-02-01
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A Next position of yield surface

S 2

j- ASh

AS

>

Figure 3.2 Force decomposition

The current force vector is denoted by S. The total force increment, AS 
during a load step can be split into two components; As*, which is 
tangential to the yield surface and produces no plastic flow and Ash which 
is not tangential to the yield surface and causes a shift of the yield surface 
offset Aa. Written as a vector in the 6 dimensional normalized force space 
this gives:

For the tangential force component the consistency criterion is written in the 
form:

As = As1 + Ash 
Aa = Ash

(3.8)
(3.9)

gT • AS1 = 0 (3-10)
while

gT Ash > 0
3FHere g is the gradient {-tt— } to the yield surface.o S -j

(3.11 )
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Within a load increment the relationship between force increment and plastic 
displacement is assumed to be linear. Since ASh is the only component producing 
plastic flow the following relation yields:

Ash = khAvp (3.12)

where kh is a plastic moduli (hardening) matrix discussed in detail in section 
3.5. The plastic displacement increment Avp is given by Eq (3.4).

3.4 Partial yielding and strain hardening model

The bounding surface concept /27/ formulated in force space is used to model 
strain hardening and partial yielding.

Figure 3.3 Schematic representation of yield and bounding surface

Consider the two surfaces in Figure 3.3 which are used to indicate the degree of 
placticity for a cross-section. The actual state of stress resultants are marked 
with the position vector S.

USFOS-TM / 1992-02-01
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A yield surface is defined by the equation

Si - Pi
Fy(Si) = 0, Sf (3.13)

where the extension parameter 0 < zy < 1 .
When the force state S has reached the yield surface this corresponds to 
initial yielding in the cross section. Once the yield surface is reached, it 
starts to translate so that the stress resultants remain on the yield surface 
during subsequent loading. This translation is uniquely defined by the history 
of the position vector P, which marks the centre of the yield surface.

Associative plastic flow theory is applied in the way that the yield surface 
Fy = 0 also serves as the plastic potential when calculating incremental plastic 
deformations Avp.

Further, in Figure 3.3 a bounding surface is defined which has the same shape as 
the yield surface. It is given by the equation.

where zb = 1 is the bounding surface extension parameter. The bounding surface 
represents the outer limit for the translation of the yield surface. A point on 
the bounding surface denotes a fully plastic stress state. Plastic, kinematic 
hardening is modelled as a translation of the bounding surface in the stress 
resultant space, given by the history of the centre position vector a.

For a given force state S which have reached the yield surface, the conjugate 
point S on the bounding surface is defined so that S and S have unidirectional 
gradients g and g as shown in Figure 3.3.

Figure 3.4 indicates the different location of stress points for different modes 
of deformation, and relates the multidimensional illustration in stress 
resultant space to a uniaxial strain curve.

and i = 1,6 (3.14)
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Figure 3.4 Analogy between multidimensional stress-space and uniaxial 
stress-strain curve.

For the adopted kinematic hardening rule no general rule exists for the motion 
of the yield surface. Prager /28/ and Ziegler /29/ have both proposed surface 
translation rules. Both these rules may violate the bounding surface consept in 
the sense that intersections of the yield and bounding surface may occur.

For the present formulation, the approach proposed by Mroz /30/ is adopted. In 
this model in which the violation of the bounding surface concept is avoided, 
the yield surface translates parallell to the vector connecting the stress 
resultant*point and the conjugate point on the bounding surface, i e.

A0 = p(S - S) (3.15)
where p is a scalar. The condition of equal gradient for S and S leads to the 
requirement

S - a = z(S - P) (3.16)

where z defines the surface size ratio z = zb/zy.

Combining Equations (3.15) and (3.16) there comes out

USFOS-TM / 1992-02-01
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AP = p(z(S-3)-(S-0()) (3.17)

The scalar p is eliminated by introducing the consistency criterion stating that
the force point is to remain on the translating yield surface, or:

- If; flsi * § 7 ^ 1  * - o

Where Af represents any deviation from the yield surface. 
Utilizing the fact that

(3.18)

3F_ 3F_
api ~ " aSi

Equation (3.18) can be written as

(3.19)

AFy = gT (As-AP) + Af = o (3.20)

Combining Equations (3.15), (3.17) and (3.18) the incremental yield surface 
translation can be written on the the form:

AP = (z(S-P)-(S-O) ) — 3— .* ----
gT(z(S-P)-(S-a))

which reduces to

(3.21)

AH . Aa - (S-PH9tAsiMl 
gT(s-p)

(3.22)

when the yield and bounding surface moves in contact.

Consistent with the formulation of the hardening increment ASh given in Equa­
tion (3.12), the incremental bounding surface translation should be along the 
hardening vector:

Aa = Ash = kh • Avp (3.23)

rather than according to Eq 3.22.

USFOS-TM/1992-02-01
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By translating the bounding surface according to Eq. (3.23) the movement is zero 
until the force state S reaches the yield surface (Fy=0) and becomes equal 
to the fully plastic rate when S reaches the bounding surface (Fb=0).

An unfortunate consequence of using Eq. (3.22) for updating the translation 
of the yield surface when the two surfaces move in contact is that the contact 
point remains fixed. It is better to let the contact point follow the present 
force point on the bounding surface. This is obtained by updating the centre 
point of the yield according to

, 3 . 2 4 ,z ' '

In conclusion, the bounding surface offsets are always predicted by Eq. (3.12), 
the yield surface offsets by Eq. (3.21) if the yield surface does not contact 
the bounding surface and by Eq. (3.24) if the yield surface contacts the 
bounding surface.

In connection to cyclic analysis the shift to cyclic material parametric implies 
a shift of the yield surface offset which is given by:

(Zyc/Zym-1) S + K
Zyc/Zym

(3.24b)

where subscripts m and c denote monotonic and cyclic material parameters 
respectively.

3.5 The hardening matrix

The hardening matrix kh contains the plastic moduli at a plastic hinge and 
is for the present formulation diagonal. For a three-dimensional beam kh is 
given by:

kh = diagonal {k11h, k22h ..... k66h} (3.29)
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where the subschript corresponds to each degree-of-freedom. In the following 
kh is briefly outlined.

It is assumed that the hardening in the fully plastic state for each load 
component Sj is proportional to the relative plastic displacement v^p/VjP;

where

Sjp - plastic capacity for force component i 
v1p - elastic displacement corresponding to S1p 
S^h - hardening force component i 
vi P - plastic displacement associated to

Eq 3.30 rearranged yields:

h S 1 pslh = c,— - VjP (3 .3 1)
V 1 p

which dictated that the plastic modulus should be taken as a fraction of the 
elastic stiffness. Thus the plastic stiffness kiih in the axial direction is 
given by:

—  , p  Ak n h = cr—  (3.32a)

where EA/_1 is the elements elastic stiffness and Cj is a nondimensional plastic 
modulus.

Similarly it is found that the plastic stiffnesses for shear and torsional 
deformation for a beam element with length 1 is given by respectively:

- h EIzk22h = c2 12 --- (3.32b)
l3
E I y

k33h = C3.12 --- (3.32c)
l3
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l3
(3.3 2d)

where Ix is the torsional moment of inertia and Iy and Iz are moments of inertia 
about local element y and z axis respectively.

If all loads are applied at the nodes, the curvature along the member is a 
function of the member ends. By use of the virtual work principle the following 
plastic bending moduli are derived:

*55h
Ely

= c 5(-T-)
(2 - s— }b 5p 1

k h k 66
EIZ

c61 J ) b6j
12 ~ s--->b6p i

{3.3 2e)

(3.3 2f)

where S5j and S6j are the bending moments at node j and S5pf and S6p1 are the 
plastic bending capacities at node i. The bending moment at the opposite node j 
in Eqs (3.32e) and (3.32f) accounts for the affect of curvature variations along 
the element on the yield hinge.

When the stress resultants are on the yield surface but have not reached the 
bounding surface, the plastic moduli have to be adjusted. For a one degree of 
freedom system the following relation holds:

Av = /&e ♦ AvP = As(£i- + — ) (3.25)

and

1 _ 1_  1_  
k " ke + kP (3.26)

where ke and kP denote the elastic tangential stiffness and plastic stiffness, 
respectively. Obviously, the total stiffness k should be equal to ke when the 
stress state just reaches the yield surface, ie kP should be infinite in this 
case. For increasing stresses it should decrease smoothly towards the fully 
plastic modulus.
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For this purpose, a distance parameter 6 is needed. This is taken as the 
distance between the current point on the yield surface and the conjugate point 
on the bounding surface as illustrated in Figure 3.5.

Figure 3.5 The distance parameter 6 

The distance parameter 5 is defined by:

6 = [(s1 - s,)(s1 - St ) ] 112, i = 1,6

’ ( S i - P i ) ( S i - O C i ) ' ( S i  -  P i )

1------

CQ_1CO

Q.
CO 

----1 Sp i  J z s * L b pi Spi  j
(3.27)

z bwhere s, is the nondimensional force vector and z = —  is the scalar factor
Zy

relating the yield surface and bounding surface sizes.

Spi is the plastic capacity of force component number i.

The distance at first yield is denoted 81n. The desired properties of the 
hardening moduli are obtained by using the following relationship.

kiih = k1ie(ci+ a,- t-^t) (3-28)u i n u

USFOS-TM/1992-02-01



USFOS Theory Manual

Plastic Hinges

3.14

where a5 is a parameter to be determined empirically, such that the transition 
performance is adequate. Thus, starts from infinity when 6 = 6in and
approaches the fully plastic hardening modulus k1i h when 6 - 0 .

3.6 Plastic Potentials for Beams

3.6.1 Interaction Surface for Thin-Walled Tube

In the case of a fully plastic stress over a thin-walled cross section the 
interaction between axial stress and shear stress is normally neglected and the 
general expression (3.1) turns into

F(N, Mx,My,Mx, P,, z) = 0

1/2 TT(1 - mx2) cos(:
(1-mx 2)1/2

-) - (mv2 + mz2) 1/2 « 0
(3.33)

where n, mx, my and mz are nondimensional parameters defined by

N-Pj
Npz ' mx

mx-[34

Mpx - z  '

My-Ps rav = —---- and mMpy • Z (3.34)

where Np, MPy, MPz and MPx are the plastic capacities for axial force, bending 
moment and torsional moment, respectively, z is the surface extension parameter 
and 04 are the surface offsets in force space. The formula does not account for 
local wall failure of the tube.
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Figure 3.6 Family of lower bound interaction surfaces when fi^O and z =1.0

Fig. 3.6 gives a graph of the interaction surface in the force space. A similar 
expression for plastic capacity is also often being used for box type profiles.

3.6.2 Interaction Surface for Symmetric I-Profiles

For modelling deck structures I-profiles should be included. Exact interaction 
formulas for this type of cross section require several positions of the neutral 
axis to be considered, and the expressions obtained are complex to implement in 
a program. Therefore, empirical formulas are used.

A general form of the interaction formula was developed by Chen and Atsuta /20/. 
A draw back with this method is that the yield surface is multi-faceted. This 
poses the problem of identifying the active facet and to determine the correct 
gradient of the surface at facet intersections.

Alternatively a single continuous equation is proposed in Ref. /21/.

F = 1.15n2+ray2+raz2+3.67n2my2+3.0n6mz2+4.65my4raz2+qy8+qz8 - 1 = 0  (3.35)

where
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Qy ~ 3? Qy ~ P3

and n, ray and raz are defined according to Eq(3.34).

Equation (3.35) was derived by a combination of trial and curve fitting. A 
comparison with the two-facet model proposed by Chen and Atsuta is shown in 
Figure 3.7.

Figure 3.7 Comparison between present surface and the two-facet surface.

For deep girders the plastic shear capacities should be based upon a thorough 
evaluation of the post-critical behaviour of the web accounting for possible 
tension field effects.

3.6.3 Interaction Surface for Box Sections

Exact interaction formulas for box type cross-sections are difficult to obtain. 
Instead, approximate expressions are derived numerically.

The interaction between axial force and bending moment is adequately described 
by the following relationship

m + na =1 (3.37)
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where ra and n are nondimensional stress resultants (see eq. 3.34) and a is a 
parameter depending on the ratio between the web area, Aw, and total cross- 
sectional area, A. A reasonable fit with interaction curves given in Ref. /22/ 
is obtained with

Aw
a -  1. 8—  + 0 . 64, a e ( i . i ,  2 . 0 ) ( 3. 38)

For biaxial bending the following interaction is adopted

Py Pz p
(my + mz )H « 1 (3.39)

where Py, Pz, are determined by curve fitting. For quadratic cross-setions 
Py = Pz = 1.75 give satisfactory results. P is selected so as to give as much 
as possible linear behaviour of the interaction function with respect to axial 
force and bending. A reasonable value is P = 3.,

In case of shear and torsion the effective yield stress of the web and the 
flanges are reduced according to the formula

Op,q = Op(1-(q2+m x2))l/2 {3.40)

and

where Qp is the plastic capacity for the shear force, and mx is defined in 
Eq. (3.34).

Accordingly, the effective plastic capacities for axial force and bending are 
modified due to shear and torsion as follows.

Ay , „ 1 / 2 Az „ „ 1 / 2
NP'q/NP = {1-(qy2+ntx2) ) + —  (1-(qz2+mx2)) (3.42)
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A z/A 2Ay/A
MyP ' q/MyP = (1“(qz2+mx2)>1/2 + (1 -(qy2+mx2))172 (3.43)

Av/A
Mz P . q / MzP = (1-(qy2+nix2))l/2 + ----- (1-(qz‘-mx*))1/2 (3.44)

2A./A
2 4-m 2M l/2

The final interaction function now reads

F = {(
M4/MyP,q Py Mz/MzP(q P;

N Q>'1_(m---)Np,  q

) + (
N Qz1-(“---)Np , q

) }^ - 1 = 0 (3.45)

This expression is not convenient from a numerical point of view due to multiple 
occurrences of potential singularities in the denominators.

By rearranging Eq. (3.45) the following expression is found more suitable for 
computer implementation.

PZ _ Py Py_ PZ o' Pz Py (5
F = (A- •my + B mz )H - (A B )H = 0 (3.46)

P*q ^P'q ®z ®z 
A = —  " n }

Myp, q Np, q ay ay
B = {(u r ) - n }

_ ^P ’ q ®y

■y = (' U T ) my

N p , q a z 

TOz -  mz

(3.47)

(3.48)

(3.49)

(3.50)
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4 Implementation of the Idealized Structural Unit Method

4.1 General Description

The present descretization technique, called the Idealized Structural Unit 
Method, is based on the physical analogy that one numerical element is used for 
each real structure element. The main objective is of course to minimize 
computer costs. Further, it is clear that this type of discretization is more 
oriented against conventional design philosophy since typical elements in the 
numerical model correspond to components to be checked in conventional design.

However, compared to conventional finite element models based upon updated 
Lagrangian formulation of socalled corotational formulation the idealized 
structural unit method implies a coarse element representation in the sense that 
each element between real nodal points is modelling by one numerical element.
Due to this relative coarse discretization it is necessary to take in geometric 
nonlinearities on local element level in order to pick up local collapse modes.

The present version of the program USFOS differs in the way of handling large 
displacements on local element level and global level. On element level large 
deflection is incorporated by additional second order strain terms while the 
global effects are taken in by updating nodal point coordinates. Thus, a total 
Lagrangian formulation is implemented on element level. However, the program 
does not imply a complete total Lagrangian formulation since the element 
reference axes are updated throughout deformation.
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4.2 Coordinate Systems

The present section describes the global reference systems and the local element 
coordinate axes. The geometric transformations in establishing global load- 
displacement relations are also explained.

4.2.1 Spatial Coordinates

A right-handed cartesian system X, Y, Z is being used for referenc system for
nodal displacements. The corresponding translation components are denoted r ,Xr , r and the rotations (p , (p , (p .Y Z X Y Z

Fig. 4.1 shows a nodal point P in undeformed configuration and the position P 
in deformed state. The displacement vector is

Figure 4.1 Spatial coordinates system

rX
r r.Y (4.1)

rZ
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Denoting by Xg the position vector Of P in underformed configuration the de­
formed position vector reads

The global vector r in Eq. (4.1) with translation parameters only indicates
together with Eq. (4.2) that rotations are not considered when updating the
geometry of the structure. It is demonstrated later that the only way rotations
Cp , (p , (p come in is on incremental form as degrees-of-freedom in the load- X Y Z
displacement relationsship. The notation r is being used in Eq. (4.1) in order 
to make a distinction from the vector r of nodal parameters used on incremental 
form in the solution algorithm.

The spatial coordinates are being used as reference system for the global load- 
displacement equations on incremental form. This means that possible incre­
mental element loads and displacements are referred to system X, Y, Z in the 
final stiffness expressions for the total structure. Thus, after having calcu­
lated incremental stiffness and element loads in a local element coordinate 
system, the element relations undergo geometric transformation into the spatial 
system before establishing interelement continuity.

The spatial coordinate system comes out with two functions

a) To se;cve as a reference system for the position of nodal points and thereby a 
reference system for global frame geometry.

b) To be a reference system for global load-displacement relations. Interelement 
continuity is established in the spatial system. This means in practice that 
element stiffnesses are transformed into the spatial system before adding 
together.

X = X0 + r (4.2)

T (4.3)
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4.2.2 Local Element System

Fig. 4.2 indicates a beam element at some stage of deformation. The end points 
of the element are numbered i and j, respectively. The direction cosines of the 
x-axis as referred to the spatial system become

X.- X.
COS (x, X ) = - L --i (4.4)

COS
Y.- Y.

(x, Y) = - L --i (4.5)

COS
Z Z . 

(x, Z) = ^  1 (4.6)

where the element length is given as

1 = (t*. - X.)2 + (Y. - Y.)2 + (Z. - Z.)2)l/z (4.7)J i J i ] i

In order to fix the local xy-plane a vector y' is defined. This vector can 
be defined by specifying two points in space or two nodal points. The dot 
product

a = i • y x
is evaluated where now is the unit vector along x.

T= [cos(x,X), cos (x,Y), cos (x,Z)]

(4.8)

(4.9)

USFOS-TM/1992-02-01



USFOS Theory Manual

Implementation of Idealized Structural Unit Method
4. 5

The unit vector i in the local y-direction is now found from 7

1y
y ' - a i

|y'-axxl
(4.10)

Finally, the local z-direction is defined by the unit vector
i = r x xz x y (4.11 )

The above choice of vector y' should be taken under the consideration of 
possible predefined reference axes of bending, e.g. for I- and H-type of 
prof iles.

4.2.3 Geometric Transformations

The transformations between local and global reference systems are in the 
following described for elements with eccentric coupling to nodal points, see 
Fig. 4.3.

Figure 4.3 Beam element with node eccentricity in spatial system

The set of two by six parameters for each element is shown in Fig. 4.4. This is
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the general beam element in three dimensions with three translational parameters 
and three rotational parameters at each node.

Figure 4.4 Three-dimensional beam element

The displacement parameters are indicated at end i of the element and the corre­
sponding forces as node j.

Referring to Fig. 4.3 the geometric transformation is twofold. First, the para­
meters at the ends of the element are transformed into global axes and second, 
account is made for eccentric nodes.

The transformation between local and global axes is given by

u cos(x,X) cos(x,Y) cos(x,Z) rX
V

w
cos(y,X) cos(y,Y) cos(y,Z) 
cos(z,X) cos(z,Y) cos(z,Z)

rYrZ

or

(4.12)

u = Gr

The transformation for the six parameters at each node becomes

(4.13)
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r r r
u r x
V G r Y
w

r z

0 X ^XCD G

CD N - L ^ z  J

Denoting by k the element stiffness matrix in local system the global matrix 
reads

K = TTkT (4.15)

where

T = r G G | G G j (4.16)

This stiffness is now referred to the element ends.

In the process of equilibrium correction it is also required to transform equi­
librium element forces into global system. Denoting by S the equilibriumeqforces in local system the corresponding global components are found from

T
R = T  Seq eq (4.17)

There now remains to account for possible node eccentricities.

i jAccording to Fig. 4.3 the eccentricity vectors e and e are defined as the
vectors from nodal point ifi beam end. The components in global system are
denoted by e , e , e . At each end of the element the following relation is

x y zvalid
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" r x
’l 0 ex - SY

r Y 1 - ez 0 ex

r z 1 ex -e 0

^X 1

■G K 1
1

J L J

element
end

"""* £element node
end

node

(4.18)

(4.19)

The stiffness transformation now reads

K T- L KL T T L T kTL

where

(4.20)

K is the 12-12 element stiffness matrix in global system with eccentrities 
included.

L =rEiE3j is the transformation matrix due to eccentricity. The components 
of the eccentricity vectors are referred to global system from node to
element end.

T is the matrix of direction cosines between local and global systems.

k is the element stiffness matrix in local system with no eccentricity at 
ends.

The transformation of internal equilibrium forces becomes

R = LTTTS (4.21)eq eq
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where

R is the global 12-1 element vector of quilibrium forces with eccentricities eqincluded.

S is the local 12-1 element vector of equilibrium forces with no eccentricity eq

The above transformations have to be carried out for each element before intro­
ducing the interelement continuity requirements.

4.3 Incremental Stiffness for Elastic Beam

The present section concerns the formulation of incremental stiffness for the 
three-dimensional beam element indicated in Fig. 4.4. The pure elastic element 
is first considered discussing alternative interpolation functions for the 
displacements. Modifications for plasticity are introduced by combining elastic 
stiffnesses with plastic properties described in Chapter 3.

4.3.1 Variational Formulation

The basis for deriving incremental stiffness for the beam element is given in 
Section 2.3.2 and most of the present discussion is devoted to choice of inter­
polation functions. The general description of displacement interpolation is 
given in Eq. (2.18) where

u(x) is axial displacement of points on reference axis x.

v(x) is deflection in y-direction of points along the beam.

w(x) is deflection in z-direction of points along the beam.

It is assumed that the local x-axis goes through the centre of gravity of the
beam cross section.
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The incremental form of the first variation in potential energy can now be 
written according to Eq. (2.21)

6Au = 6uT f EA(p cp T dx A u  0 Tu,x^u,x

+ 6vT / El (cp mT N T(p (p )dx flyn z v,xx v,xx El v, x v, xz

+ 6wT j e i  (cp cpT N’d IT ' “t.t W T'q y w,xx w,xx EI^ w,x w,xcp ) dx A w

+ 6vT f EA(p v cpT dx Au 0 v,x ,xTu,x

+ 5uT X EA(p v CpT dx A v  0 u,x »x v,x (4.22;

h IP+ 6 w  J EA(p w Cp dx A u  g w, x , x u, x

T r T+ 6u  J  EACp w (p dx A w  
g u,x , x w,x

T ' T+ 6v  r EACp v2 cp dx A v  0 v,x ,xTv,x

+ 6 w  f EACp w2 cp dx A w  
g w, x , x w, x

T T+ 6 w  f EACP w • v cp dx A v  0 Tw, x ,x ,xTv,x

T t+ 6v r EAffl v ■ w Cp dx Aw 0 v,x ,x ,xTw,x

Arranging the parameters of the element in the order u, v, w  the stiffness matrix 
may be ordered correspondingly.
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k k k kuu uv uw

k k kvu vv vw

k k kwu wv ww

(4.23)

The following expressions for the submatrices emerge from Eq. (4.22)

uu
r TJ EACp tp dx 0 Tu,x^u,x

vv r ei (cpT cpQ Z V,XX V, XX
N T—  Cp cp ) dx EI ^v,x^v,x'

T T »pk = f EI (ffl ffl ww £ y w,xxw,xx
N T— — Cp Cp )dxEI w, x w, x

(4.24)

(4.25)

(4.26)

These are the diagonal submatrices also present in the secant stiffness matrix 
arizing from Eq. (2.19). The subsequent terms comes from large rotations and 
are nonlinear geometric contributions.

vu f EACp v Cp dx 0 v,x ,x^u,x uv (4.27)

wu J EACp w Cp dx W, X , x u,x uw (4.28)

These two are coupling matrices between axial and lateral deformation and linear 
in rotation.

Finally, the diagonal submatrices for deflection k and k get additional
v v  wwcontributions that are of second order in rotation

k11 = f EACp v 2(p Tdx (4.29)vv v,x ,x v,x
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= I EA(P,ww wW, X ,X W, X dx (4.30)

while coupling matrices between the two directions of delflections come out of 
the two last integrals of Eq. (4.22)

k = f EAffl w v CDT dx = kT (4.31)wv w, x , x , x v, x vw

Eqs. (4.24 - 4.31) preserve symmetry in the final incremental stiffness matrix. 
The contributions from Eqs. (4.27 - 4.31) give the corrections of element 
stiffness matrix due to large deflections over the element. In an updated or 
corotational formulation these extra terms are normally neglected and only the 
linear secant submatrices in Eqs. (4.24 - 4.26) are normally used. Several 
numerical elements are then needed over one real beam element.

It should be emphasized that the above derivations do no include torsion. 
Torsion stiffness is directly put into the stiffness matrix in USFOS.

4.3.2 Interpolation Functions satisfying the Differential Equations

Two alternative choices of interpolation functions are incorporated in USFOS.
The original version of the program is based upon functions cp (x) and (p (x) thatv wsatisfy the differential equations for a beam with axial force N (positive in 
compression) and no lateral load

Nv + — —  v = 0,xxxx El ,xx z

N nw + — — w = 0, xxxx El , xx z

In the following only deflection v in y-direction is considered. The deflection 
w in z-direction can be treated in a similar manner. However, Eqs. (4.32 -4.33) 
become more complicated when deflection occurs in y- and z-direction simulata- 
neously. This is discussed later in this section.

(4.32)

(4.33)
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, Nk̂  = —  N positive for compression 

gives for N in compression the following solution of Eq. (4.32)

(4.34)

v(x) = Aj-coskx + A2 • sinkx + A3• y + A4 

and for N in tension

(4.35)

, . kx _ kx x v(x) = Aj• e + A2•e + A3 • y  + A4

or equivalent

(4.36)

Xv(x) = Aj-coshkx + A2 sinhkx + A3 • y  + A4 (4.37)

The parameters A 3 - A4 are treated as generalized displacements, 
q the vector
V

Denoting by

Tq y = [Aj A2 A3 A4] 

the interpolation functions are collected in the vector

(4.38)

x TCD (x) = [cosk x, sink x, —  , 1] qv y y 1 ‘

for N in compression, and

(4.39)

, , k x _k x x „ ,T <Pqv(x^= [e y r e y ,y , 1 ] (4.40)

for N in tension. For both cases the interpolation of deflection v is written

v(x) = cpjv (x)^

Similar expressions can be set for deflection w

(4.41)

qw = lBl b 2 b 3 b 4 1 (4.42)

x TCD (x) = [cosk x, sink x, —, 1] qw z z 1

for N in compression, and

(4.43)
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k x _k x „
(p (x) - [e Z , e Z , f , 1] qw 1

for N in tension. The interpolation of w becomes

(4.44)

w(x) - (P̂ w (x)q[w (4.45)

The interpolation of axial displacement u(x) was originally linear. However,
with the strain expression in Eq. (2.6) self-straining may easily occur since by
rigid body rotation the constant term u does not match the higher order contri

, x
butions in v2 and w2 . The same problem has been discussed by Sareide /16/, x , x
for the finite element technique based on total Lagrangian Formulation.

Higher order variation of u(x) is chosen similar to the interpolations of 
deflections, namely

u(x) = <p̂ u (x)qu 

with

(4.46)

qu = [Cx C2 C3 C4]T 

For N in compression the interpolation read

(4.47)

x T(D (x) = [coskx, sinkx, — , 1) qu 1

and for N i tension

(4.48)

m ^  kx _kx x ,,T(Pqu(xr= [e , e , 1 ] (4.49)

k = ( k 2 + k 2 - k k  )l/2 y z y z (4.50)

It is seen that the parameters A, B and C are associated with rigid body motion 
only and have no stiffness influence. Therefore, the typical submatrices are of 
dimension 3 3  in generalized displacements.

Referring to Fig. 4.4 the relations between generalized displacements and real 
displacements are as follows
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Deflection v: T q = v A v

or for N in compression

1 0 0
0 k J_

y 1
c s 1
k • s k • c 1_
y y 1

= cosk •1 ; sY
and for N in tension

1 1 0
k -k I
y y 1
k 1 e y _k 1 e y 1
, k 1 , _k 1 1k e y -k e y —y y 1

Deflection w: = w

or for N in compression

1 -o 0 0

0 -k J_
z 1

c s 1

k • s -k • c 1_

c = cosk -1 ; s =z

1 A1 V1
0 a 2 pHNCD

1 A3 V2
0 a 4 9 2zc

sink 1 Y

1--- ' A1 ‘ T—H >
1___

a 2

II

NCD

A3 v2----n
<

____
i

0 2

- ■ -
®1 wi
b 2 II CD »-*

b3 w2

CQ
___

i 9 2 
L y  J

sink 1 
z

(4.51)

(4.52)

(4.53)

(4.54)
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and for N in tension

1 i 0 1 ■

I
B1 W1

- k k 0 HCDz
k 1

z
_k 1

1 b2
z z 1 1 B3e e _ wz
k 1 _k 1 I CM>

CD1 (0 N k e Z - 0 B4
Z z 1 . m .

(4.55)

The axial interpolation undergoes static condensation into two parameters u 
u2 at element ends. The first step in this procedure is to keep Cj and C2 
as generalized displacements and to introduce Uj and u2 instead of C3 and C 
the following way

“

1 0 0 0 Cl Cl

0 1 0 0 c 2 c 2

1 0 0 1 C 3 U 1

c s 1 1 c 4 U 2

c = coskl s = sinkl

or

T q = u (4.57)
c u c

where u denotes the uncondensed axial displacement vector, 
c

Further details on stiffness evaluation are given in Section 4.3.4.

4. 16

j and 
still 
4 in
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4.3.3 Third Order Polynomials as Interpolation Functions

The computer program also includes the conventional third order polynomials for 
deflection

= (D T qw 1]

which now are equal for compression and tension

(4.58)

Eq. (4.51) turns into

0 0 0 1 ’ A 1 ' V 1

o O H|
- o A 2 9 1z 1

1 1 1 1 A 3 v 2
1 1 1  

. i i i J A 4 0 2

and Eq. (4.53) reads

0 0 o o' ’ ® i " W1

O 0 1
H|

- O b 2 0 1 y1
1 1 1 1 B3 w 2
-  - -  - -  oi l l b4 0 2 L y J

(4.59)

(4.60)

The generalized axial coordinates in terms of nodal parameters u1 and u2 given 
by Eq. (4.57) become

■ “ • *
i 0 0 0 Cl Cl

0 1 0 0 C 2 C 2

0 0 0 1 C 3 U1

i 1 1 1 c 4 u2
.

( 4.61 )
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4.3.4 Final Stiffness Matrix

It is easily verified that the three rigid body parameters A4, B4 and CA do not 
enter into the stiffness expressions (4.22). The 9x9 element matrix of Eq. 
(4.23) can be evaluated in generalized coordinates

k kququ quqv quqw

k kqvqu qvqv qvqw

k kqwqu qwqv qwqw

(4.62)

with all submatrices of dimensions (33)

The transformation into parameters u implies the following operations on sub-cmatrices in Eq. (4.62)
k = (T "M k (T -1)c (4.63)ucuc c ququ

k V ‘> k (4.64)ucqv quqv
k V 1) k (4.65)ucqw quqw

The 4-4 matrix k is divided into 2-2 submatrices connected to parametersucucC2 and Uj, u2.

k k 0 (4.66)ucuc cc

0 kuu

Further the matrix k is horizontally splitucqv
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k k
ucqv cqv

kuqv

(4.67)

and correspondingly

k
ucqw

k
cqw

kuqw

(2.4)
(4.68)

The axial mixed vector of Eqs. (4.56, 4.61) is subdivided

” "
Cl
C2 C

U1 u
u2

- m _

(4.69)

The incremental virtual work associated with generalized parameters Cl7 C2 gets 
the form

6cTAs = 6cT {k Ac + k Aqr + k Aq } (4.70)c cc cqv cqw t t

Having u 1# u2 as the final parameters in axial displacement the work associated 
with 6c should vanish. This results in the well known procedure for static 
condensation.

Ac = - k 1 {k Aq + k Aq }cc cqv cqw ^wJ

where k ^  = 0 is incorporated

( 4 . 71)

USFOS-TM/ 1992-02-01



USFOS Theory Manual

Implementation of Idealized Structural Unit Method
4.20

The incremental virtual work associated with q is now

5q TAS = 5 q T{kT Ac + kT Au v qv cqv uqv

k Aq + k AqL } qvqv nr qvqw ^wqvqw
(4.72)

Combining Eqs. (4.71, 4.72) gives

6q TAS = 6q T{kT Au + (k - kT k 1 k )Aqv v qv v uqv qvqv cqv cc cqv

+ (k - k k'1 k Aq. } qvqw cqv cc cqw nw

hence leading to the modified submatrices

(4.73)

k = k - kx fc-1 kqvqv qvqv cqv cc cqv (4.74)

k = k - kA k~l k qvqw qvqw cqv cc cqw (4.75)

TA similar evaluation of 5q_As leads toqw

k = k - k k 1 kqwqw qwqw cqw cc cqw (4.76)

— T — Tk = k  - k  k~*k = kqwqv qwqv cqw cc cqv qvqw (4.77)

The finale-transitions from generalized coordinates q^ and q^ into nodal displace­
ment parameters v and w out as

k = k (T ' 1) uv uqv A 4.78)

k = (T -J)T k (T vv A qvqv A

k = k (T ~ 1 uw uqw B

(4-79)

( 4 . 80)
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k = (T ~1)T k (T "1) vw A qvqw B (4.81)

k = (T -1) k (T '*) ww B qwqw B (4.82)

Before organizing the incremental stiffness matrix node-wise the above sub­
matrices are defined out of

As k k k " A uu uu uv uw
(2-2) (2 4) (24)

As __ k k k A vV vu vv vw
(4-2) (44) (4-4)

As k k k A ww wu wv ww
(10-1) . (4-2) (4-4) (4-4) . ..(10-1).

(4.83)

For the full three-dimensional beam element the torsional rigidity associated
with 9 1 and 0 2 has to be included. The St. Venant elastic rigidity GIt/K is x xput on main diagonal and -GI /K on coupling terms.t

The final transformation into node-by-node order is a simple reorganization of 
Eq. (4.83) and is not given in detail here.

4. 4 Modifications for Plastic Hinges

The present section concerns the modification of elastic stiffness matrix due to 
plastification. 'As explained in Chapter 3 plastification is supposed to be con- 
centrated at hinges. The present version of USFOS considers three alternative 
locations of these plastic hinges for each element, namely at the element ends 
and at midspan.

4.4.1 Plastic Hinge at Element Ends

First, some comments are given on the calculation of elastic and plastic 
deformations in the vicinity of a plastic hinge
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Figure 4.5 Rotations at beam end

Fig. 4.5 shows a beam end coupled to a node with an assumed plastic hinge at 
the beam end. The node rotation is 0. Due to concentrated rotation at the 
plastic hinge a discontinuity occurs in beam rotations across the hinge and the 
following relation comes out

0 , = 0, . + 0node hinge elastic (4.84)

It is clear that when introducing interelement continuity 0 should benodethe characteristic parameter at the beam end and not 0elastic

Similar considerations can also be made for the other displacement parameters. 
Thus, by using the notation

v . T = [u v w 0 0 0 ]l x y z
and

Tv r T T i= [Vj v 2 ]

i - 1,2

The elastic and plastic rotations are separated in the way

v  = v ♦ vP

(4.85)

(4.86)

(4.87)

where indices e and p denotes elastic and plastic (hinge) parameters, 
respectively.

Implementing the system of Eqs. (4.85 - 86) also for beam end forces
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[ N, Q , Q , M , M ,M ] y z x y z i = 1,2 (4.88)

ST (4.89)

the incremental stiffness relation of Eq. (4.83) can be written

’ A s : k l  1

1

C\J
X

---
---

-1

—
 (D

__
__

i

’ A S j

= +

. ^ S 2 . k 2 1 k 2 2 . A v z e iCO
ICO
\

<
i

____i

The only difference is now that the elements in Eq. (4.83) have been reordered. 
Consistent nodal force increments ( A s 1 AS2) from consentrated and laterally 
distributed element loads have also been included.

For the plastic hinge the deformations are given by the flow rule of Eqs. 
(3.4-6), or by the new notation.

A v . P = A X . g . ; i  = 1 , 2  ( 4 . 9 1 )l i i

with g being the partial derivatives of plastic potential F with respect to ieach component at beam end no. i

T _ 8F 6F_ 6F_ 6F_ 8F_ 8F
9i ” 8N' 6Q ' 3Q ' 6M ' 6M ' 9M y z x y z

Eq. (4.90) now turns into

H s 1 ki l kl 2 Avĵ kll9l kl2g2 AXj
+

ASj

As2 k2 1

---
1

COCOM Av 2 k2 l9i k2 2g2

---
1

CM
<1 As2

(12-12) (12-2)

(4.92)

(4.93)

The consistency condition of Eq. (3.10), stating that during loading the stress 
resultants remains on the yield surface, can now be expressed as

USFOS-TM/1992-02-01



USFOS Theory Manual

Implementation of Idealized Structural Unit Method
4.24

3F - t 6F -
a s 1 ASl  + a s . . -  As p * = °5pi

Inserting Equation (3.8) gives:

(4.94a)

g^(ASi - AsJ + Asp (4.94b)

Substituting Equation (3.12) into (4.94) gives 

(As. - k̂ .Av?- Cp1 AViP) = 0 , i - 1,2 

Combining Eqs. (4.93-94) leads to the following equations for AAj and AA2.

T h T9l (kii+kii+cii)9i 9i ^12^2

T T hg2 k21gi g2 (k22+k22 +C22)g2

AX,

AX;

T T9l kll 9l ki2

T Tg2 k21 g2 k2

Av1 g^ASj
+---,CM>

<3
___1 g2TA§ 2.

(4.95)

(2-2) (212)
h jiHere kj} and k22 are the hardening matrices associated with beam element end 1

h h.and end 2 respectively. From section 3.6 it is also evident that k12 = k21 = 0 

The solution for A X 1 and A A 2 can be written

AX,

AX 2 J

1 hTh 12

T T 
h 2 i  h 22

Av1

--
--

1 TPl2 bs1

+

Av 2 T. P2 1 TP2 2 .

---1C\J
ICO <1 

___1

(4.96)

where

hThll det {(92 (k22+k22+C22)^2)9iki l T T
(9i k i2^2)92 k2l)) (4-97)

ll 2 = det {(g2 (k22+k22+C22)g2)9ik12 - (g! k12g2)g2 k22)} (4.98)

1 det
T{(9l (kll+kll+Cll)9l)92k21 - (92 k2l9l)9l kl 1 >} (4.99)
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hTh22 1
det

T h T T T { (g 1 ( kl 1+kl 1 1 ) 9i)9zk22 “ (92 2̂ 191 ) 9 1 ki2)) (4.100)

T 1 T , , h T (4.101 )Pll det (92 ( k2 2 +k2 2 + 2̂ 2 )9z )9i

T 1 , T , T (4.102)Pi 2 det ( 1 ^ 2  92)92

T 1 , T , T (4.103)Pz i det (“92 k21 9i)9i

T 1 T , , h T (4.104)P2 2 det (91 (ku + ku + C 11)g1)g2

det , T = (g 1 h T h T (kl l+kl l+^l 1 ) 91 ) (92 (k22+k22+C22)g2 “ (g 1 ki292 )̂ (4.105)

Itl hFor the case which not includes material hardening = k22 = 0 
and Eqs. (4.95) - (4.105) are simplified accordingly.

The quantities in paranthesis ( ) come out to be scalars. Each of the sub­
vectors h and p has dimension 61. It is seen that there is a contribution

ij ijto the plastic increment from both the displacement increment as well as from 
the consistent nodal force increment.

The elasto-plastic stiffness of the element is now obtained by substituting Eq. 
(4.96) into Eq. (4.93). The result is

r -1“C> _ r -i
hs1

_
kep*1  1 kepk12 Av1

+
ep

P 11
ep

P 12 A sx

. AS2. kepL K2 1 kePk2 2 J /\v2 epL P 2 1
ep

?2 2 J As2
(4.106)

where Eq. (4.106) now gives the incremental elasto-plastic stiffness for the
epbeam element. The elasto-plastic submatrices k.. come out as
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k Sp = k . . - k g  h  T ; lj lj lk k kj
ep * T
Pij ' 6ij - ki k Vkj j - k a 1, 2

(4.107)

(4.108)

In Eqs. (4.107-108) Einsteins summation convension is adopted and thus k is the 
dummy summation index.

In the case of plastification only at one end of the element the above expres­
sions are simplified. Denoting by index i (i = 1 or 2) the end that is plasti- 
fied Eq. (4.94) is still valid and Eq. (4.95) reduces to

( g T ( k . . +  k . h + C . . ) g . ) A A . =  [ g . T k  i n  n  ii,3i' i l3i i1
Tg, k.„] yi i21

Av i
Av,

g T As.i i (4.109)

Note: Not sum over index i.

Eqs. (4.97 - 105) are simplified to

. T 1 T, h  = v—  g. k , i1 det i i1 (not sura)

h T __ 1_
hi2 det

T 1 T
Pi " det ®i

T. 9- (not sura)

T hdet = g. (k..+ k..+C..)g. (not sum)i li li li i

other elements vanish.

(4.110)

(4.111 )

(4.112)

(4.113)

It is easily verified by introducing Eqs. (4.97-105) into Eqs. (4.107-108) that 
symmetry of the stiffness matrix is preserved through the elasto-plastic modifi­
cations .

During a finite load increment the stress state in fact moves tangential to the
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yield surface. The deviation from the true yield surface may be corrected for 
by introducing an equivalent load vector. Rearranging Eq. (4.94) the consist­
ency condition may now be expressed

T t -
g.AS.  + AF. = 0  (i = 1,2, not sum over i) (4.114)i i i

where AE\ represents the deviation from the yield surface at end i.

Introducing Eq. (4.114) into Eqs. (4.93) there comes out a contribution to the 
plastic increments.

A*!*

A A 2 *

til 11 2
t2 1 t22

AFt

. AF2
(4.115)

where

1 T h
• l l  = d e t  ( g 2 ( k 22+K22+C2 2 ) g 2 2 ) (4.116)

:zi = dlt (“gl kl2 9z) (4.117)

1 T
■2 1 = ("92 k2 1 9l ) (4.118)

t ? z  = d e t  (g' l ( k l l +kl l +Cl l ) g l ) (4.119)

The equivalent model force vector contribution becomes

AS*

As 2*

r 4-eP t ePM l  r 12

^ep .ept 2i  t 22 j

Af ,

Af 2 J

(4.120)

6DThe elasto-plastic subvector t.. comes out asi3

te? = -k g t . lj lk k kj (4.121)
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For plasticfication at only one end a similar simplification is valid, namely

(4.122)

and the determinant given by eq. (4.113) other elements vanish.

^i det A A .i i = 1, 2

Contrary to the consistent nodal force increment, the equivalent nodal force 
vector due to yield surface deviation has a distinct sign and magnitude. Hence, 
it should not be scaled or reversed, as for example during global unloading, but 
only be taken into account during equilibrium iteration.

4.4.2 Plastic Hinge at Element Midspan

The check for plastification is also performed at element midspan. If the 
plastic capacity is reached at midspan the member is divided into two new 
members, see Fig. 4.6.

Preliminary node. 
I  To be condensed

Fig. 4.6 Subdivision of beam element for plastic hinge at midspan

The orientations of the two new elements 1 - 3 and 3 - 2  are calculated on the 
basis of the updated local deformations of element 1 - 2 .  New local accumulated 
deformations are calculated for elements 1 - 3  and 3 - 2 as the difference 
between the deformed element 1 - 2 and the straight lines 1 - 3 and 3 - 2 .  This 
is practically performed by introducing accumulated end rotations for the two
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new elements equal to the accumulated rotations for element 1 - 2 in points 1,3, 
2 minus/plus rigid body rotations 0.

The elastic stiffnesses are found for elements 1 - 3 and 3 - 2  with local large- 
deflection effects included. A plastic hinge is introduced in one of the two 
new elements at node 3 and the stiffness matrix for this element is modified.

Finally, the stiffness matrices for the two elements are transformed into the 
original member system 1 - 2  and added. The extra node 3 is thereafter elimi­
nated by static condensation.

By the above procedure the original member 1 - 2 is again the basic element to 
use further in the global frame analysis. The process of static condensation is 
only performed at element level and does not imply much computer costs.

4.5 Accumulation of Stress Resultants

The procedure for calculating internal stress resultants in the structure is of 
vital importance for the stability of the solution algorithm. It is essential 
that the calculation of stress resultants is consistens with the scheme for 
incremental stiffness. If not, flase unloading during iteration may occur.

Special care must be shown when using the Livesly expressions for stiffness 
combined with the load-dependent shape functions of Section 4.3.2. The change 
of shape functions during incrementation is here an extra source of problems.

The incremental elasto-plastic force-displacement relation for an element is 
given by Eq. (4.83). The basis for this expression is the elastic element 
stiffness in Eq. (4.22). As pointed out in Section 2.3.1 the incremental stiff­
ness represents a linearized version in the way that higher order terms of
Av, a n d  Aw, a r e  neglected. For the elastic axial strain increment the correct 

x x
e x p r e s s i o n  reads

(4.123)
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The last two terras are neglected by the linearized incremental stiffness. 
However, when calculating change in stress resultant N the coraplet expression 
(4.123) should be included.

The notation consistent now means that for one element, within one cycle of 
loading the terras of Eq. (4.83) are the same for calculating incremental stiff­
ness at the start og the cycle and for calculating stress resultant increments 
at the end of the cycle. This means that for each element the local stiffness 
matrix may be stored and then updated with the next cycle.

The inclusion of the nonlinear incremental rotations in Ae may be consideredxas a tension correction of the effective axial deformation. In the case where
the element undergoes increment in compression during a step the two last terms
in Eq. (4.123) r e duces the c o m p r e s s i v e  Ac due to a d d i t i o n a l  d e f l e c t i o n  flexibi-xlity. For tension increment Ae the two terms give extra membrane stiffness.xThe general effect of these terms is therefore to give a stiffer element for 
tension and softer element for compression.

The elasto-plastic incremental load-displacement relation on local element level 
given by Eq. (4.83) is now used for calculationg load increments. The modifi­
cation for nonlinear strain terms is incorporated by substituting the axial 
displacement Auj by

Auj* = Auj - {J(Av<xz + Aw, xZ)dx (4.124)

Generally*, with coupling terms in the stiffness matrix this gives corrections 
in incremental axial force, shear forces and moments.

It should be emphasized that in order to perform the modification (4.124) back-
substitution via Eqs. (4.96 -91) is necessary so as to obtain the pure elastic
deformations. This backsubstitution has to be carried out in any case before
the generation of new incremental stiffness since v, and w, for the elasticx xelement must be updated according to Eq. (4.22).

After calculating stress resultant increments by Eqs. (4.83, 4.124) these are 
added to the previous values and a new cycle is performed.
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An alternative scheme for calculating internal forces, is to use the elastic 
secant stiffness in Eqs. (2.17, 19), so that

AS = ksec • Velas (4.125)

where ksec is the elastic stiffness matrix, containing geometric contributions, 
and Velas is the vector of total elastic, nodal displacements.

This formulation has been implemented in USFOS and proved to perform well.
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5 SOLUTION ALGORITHM

The present chapter gives a review of the basic numerical techniques implemented 
in USFOS for solving the nonlinear equation. Special attention is given to 
reliable techniques for collapse and buckling problems.

Two instability phenomena that are frequently encountered in nonlinear 
structural problems are limit points and bifurcation points. They are 
illustrated in Figure 5.1.

Figure 5.1: Load-deflection curve with a limit point A and a bifurcation point B.

In an incremental-iterative solution strategy the traversal of a limit point is 
characterized by a continuous decrease (increase) of stiffness until a local 
maximum (minimum) of the load is obtained. The mode of deformation is stable in 
the sense that the deformation components grow monotonously. At the limit point 
A the following relations hold true:

det (Kj) = 0 

KjO = 0
(5.1 )

<Dt R *  0
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Here Kj denotes the tangent stiffness matrix,
0 is the eigenvectors of the tangent stiffness matrix 
and R is the increment in the external load vector.
The current stiffness parameter Sp is for a typical load step number i defined 
by :

SiP
Ar^AR1
ArlTAR1

|ARVIAr 1|2

and has the initial value 1.0 at step number 1. This makes Sp to be a normalized 
measure of the tangential stiffness along the deformation path.

A point where the load displacement curve branches into two or more solution 
paths is called a bifurcation point. This is indicated by point B in Fig 5.1. 
Beyond the bifurcation point the solution may follow any of the branches. 
Switching over to the correct path, being the path with the lower energy, 
implies often a change in the deformation pattern, so that all deformation 
components do not grow monotonously. This is characterized as a snap-back 
(spring-back) type of deformation.

At the bifurcation point the following conditions apply 

Sp * 0

det (Kj) = 0  

= 0 

<DtR = 0

(5.2)

A bifurcation point may be turned into the a limit point by introducing compo­
nents of the correct bifurcation path as small imperfections to the system.
These imperfections will cause the structure to deform along the dashed line in 
Fig 5.1 and the behaviour resembles that of a limit point.

The traversing of a bifurcation point is especially challenging from a numerical
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point of view. The prebuckling deformations may lack sufficient components to 
allow switching to the correct path. Sometimes the solution alternates between 
two branches. The correct path is not known apriori and can not be introduced 
as initial imperfections unless a complete reanalysis is performed once a 
bifurcation point is detected.

Very often standard procedures for equilibrium iterations fail to converge at 
limit - and bifurcation points. However, self adaptive solution schemes such as 
arc length methods have proved to cope well with such problems. Due to its 
simplicity the method with iterations on the normal plane is preferred.

5.1 Step-by Step Method

The two sources of nonlinearity, namely material plastification and large 
deflections, have been implemented in the incremental load/displacement rela­
tion. Thus, it is natural to go for a step-by-step technique.

The incremental stiffness is expressed by the following relation

where index "i" denotes step number. Kj is the incremental global stiffness and 
Ar and Ar incremental loads and displacements, respectively.

The total^load after step number i is accumulated from the previous steps in the 
way:

K, * ~1 Ar’ = Ar ’ (5.3)

R1 = R1-1 + Ar ’ (5.4)

and similarly the displacements

r 1 = r 1' 1 + A r ’ (5.5)

It should be emphasized again that the incremental matrix Kj generally is a 
function of the current configuration of the structure, and for elasto-plastic
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problems, the entire deformation history.

The program applies the simple Euler-Cauchy incrementation method, see also Fig. 
5.2. The major deficiency by this technique is the risk for drift off from the 
exact solution path. Corrections for this uncertainty is taken care of by in­
cluding equilibrium corrections in the load vector at every step, see Fig. 5.3.

Figure 5.2 Displacement and load histories by Euler-Cauchy incrementation
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Figure 5.3 Load increment no. 1 with equilibrium correction

Fig. 5.2 indicates the pure Euler-Cauchy incrementation technique in multidimen­
sional displacement and stress space. The external load is specified by load 
steps in Fig. 5.2b (Solid line) and the corresponding exact displacement curve 
is the solid curve in Fig. 5.2a.

The Euler-Cauchy solution is illustrated by the dotted line in the displacement 
space (Fig. 5.2a) indicating a truncation error (drift-off) related to the exact 
path.

The history of the global vector of internal equilibrium forces Reg1, corre­
sponding to the approximated displacement solution is dotted in the load space 
of Fig. 5^2b. It is indicated that the vector of equilibrium forces may show a 
highly nonregular variation during displacement history.

Fig. 5.3 illustrates the process of Euler-Cauchy incrementation combined with
equilibrium correction. Let R1~1 be specified external loads after step
no. i-1. The current increment no. i of external loads goes from R'"1 to R'.
At level no. i-1 comparison is made between external loads and internal equili­
brium forces in global system, Rgg1'1. The unbalance R1-1-Req1“1 is added as a 
correction to the specified increment in external loads so that the load incre­
ment given in the program is R1- Rgg1*1.
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It is easy to implement the above modification for equilibrium correction in 
USFOS since Req is available from the stress state. The extra computer time at 
each load level is moderate.

5.2 Equilibrium Iteration

A further extension of the process of equilibrium correction is to introduce 
equilibrium iterations on the unbalanced load vector R-Req at each level of 
specified external loads. For pure Newton-Raphson iteration the iteration cycle 
j at load level i is given by

KI1^ " 1Ar1'̂  = ARX'j (5.6)

i, jwhere AR is the unbalanced load vector

Ar 1' = R1 - R1'^"1 (5.7)eq

The qualities of Newton-Raphson iteration as applied to highly sensitive struc­
ture problems are discussed in Ref. /17/.

Figure 5.4 Newton-Raphson iteration in displacement and load space
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The process of equilibrium iteration is illustrated in Fig. 5.4 where it is
indicated how the equilibrium configurations are updated through the process.
As shown in Fig. 5.4.b the level of external specified load R1 is kept constant
during iteration. Again, the non-consequent direction of the corrective load 

< i/ 3 vector R'-R is indicated,eq
i, jThe pure Newton-Raphson iteration requires an updated tangent stiffness KIfor each iteration cycle. For many problems computer costs are saved by a so- 

called modified Newton-Raphson procedure where the stiffness is kept constant 
over a number of cycles. The simplest version is for all iteration cycles within 
a load step to keep the stiffness from the first cycle where the specified load 
step is applied.

5.3 Arch length control

In the arch length method the increment size is calculated from a prescribed arc 
length in the load-displacement space defined as

In the iterative phase the solution is forced to travel in a plane normal to the 
increment vector as illustrated in Fig 5.5.

(5.8)

where Ar is the displacement increment corresponding to the initial incre-i, 0ment of the external load AR

i,0
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Figure 5.5: Iteration on a normal plate.

This is fasciliteted by imposing the condition

<flri' V  fir1 ' 1 . ( A R l' V  A r 1 ’3 - 0i, 0 T (5.9)
i, J l, ]where AR and Ar are the change in the external load and displacements

during iteration step j, respectively.

The iterative change in displacements consists of two contributions, one due to 
unbalanced forces Runba1 and one due to a change in the increment of the 
external load during iteration number j;

Ar 1'? = ApAR1' 0 (5.10)

Thus the resulting iterative change of displacements becomes

Ar 1/ J A r 1 '? , + A p JAunbal Jn1'! ext (5.11)

where

Ar1'?ext ( K 1 '^) A r
i,o (5.12)

A r 1 '? = (k ; , j ) A r 1 . .unbal I unbalr1'! .i'J (5.13)
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Combining equations (5.9) and (5.11) there is obtained

ApJ = -
(Ar1'*)* Ar1';*unbal

(Ar1,0)T fir1,0 + (ARi'°)T Ar1,0
(5.14)

Because the displacements and loads are given in different scales, the terms 
in Eq (5.14) are scaled agains the increments in displacements and load 
in the first load step, i.e.

ApJ

( A ^ ' V  Ar1'’ ,______ _____ unbal
(Ar1,0)T Ar1,0

(Ar1,°)T Ar1,0 + (Ar1-0)7 Ar1'0
(Ar1,0)T Ar1,0 (Ar1,0)T Ar1,0

(5.15)

It is seen that the procedure implies that each iteration is solved in two 
steps. The first step is as before the contribution from the unbalanced forces, 
given by Eq (5.13) and the second step is the contribution from a change in 
the external load vector given by Eqs (5.9), (5.12) and (5.15). Thus, the 
difference from the conventional iterative procedure describes in Section 5.2 
is that the external forces no longer remains fixed during iteration.

Under certain circumstances the iteration process may fail to converge when 
passing limit - or bifurcation points. This is illustrated in Fig 5.6.
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Figure 5.6 Iteration failure.

In such situations the following procedure is adopted:

The current stiffness parameter (with reference to the reference load pattern) 
and the determinant of the stiffness matrix are calculated at each iteration 
step. If either of them becomes singular or change sign the iterations are 
terminated. The sign of the iterative change in external load and associated 
displacements (second term in Eq (5.11) are reversed. In the next step the 
iterations are resumed as usual. This is illustrated in Fig 5.7. For further 
details, see USFOS Users Manual section 4.2.3.
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Figure 5.7 Iterations beyond critical points.

5.4 Convergence Criterion

In order to adequately terminate the equilibrium iterations some convergence 
criterium must be incorporated. Principally, two groups are available, namely 
displacement criteria and force criteria. These are based on rate of displace­
ment and equilibrium force change respectively. Due to the arbitrary variation 
of the equilibrium force vector some type of displacement norm is usually 
recommended.

The two alternative criteria may be written as:

i
|Ar1’0|

i IAr 1,J|
IAr 1’0 I

(5.16)

where AR1’'* and Ar1’  ̂ are the load and displacement vectors of iteration j of 
step i and Ar 1,0 and Ar1,0 are the load and displacement increments for step 
number i.
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For the program USFOS, the displacement norm is preferred and the convergence 
criterion for terminating the iteration process is written as:

6r1t = eit (5.17)

where £jt is a presented limit, normally in the range 1.0-10~4 to 1.0-10'3.

In order to terminate the iteration for non-converging or slowly-converging 
systems a maximum number of iteration cycles per load step is imposed.

5.5 Increment Scaling

It is indicated by the above description of numerical procedure that the trunca­
tion error may bring the solution far from the true path. Special care must be 
taken when abrupt changes occur in the structure system, e.g. by the creation of 
plastic hinges. It may be difficult to reach the true solution by equilibrium 
iterations for cases where the specified load increments are too large. In 
order to guarantee for this problem a procedure for increment scaling is imple­
mented. This is organized in the way that when plastification is detected 
during an increment, the size of the increment is scaled down so as to just 
reach the failure surface at the point of plastification.

By this technique a safer process of load incrementation is obtained since 
abrupt changes in structure stiffness are taken into the step-by-step scheme as 
early as possible.

-Zt

5.6 Bifurcation Analysis

When the condition in Eq (5.2) is fulfilled, i.e. the incremental matrix 
becomes singular while the current stiffness parameter is nonvanishing, bifurca­
tion is taking place. To enhance the numerical stability of the solution, a 
pertubation in the form of the assumed correct buckling mode is injected.

In practice it is difficult and timeconsuming to find the exact point of singu-
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larity. Hence, the bifurcation analysis is carried out once the determinant 
changes sign while the change in current stiffness parameter may be larger than 
a prescribed level.

The eigenvalues and eigenvectors of the tangent stiffness matrix are defined by

in which COj is the eigenvalue and <Dj is the eigenvector.

The eigenvalue calculation is carried out by means of a standard routine for 
subspace iteration.

An eigenvector corresponding to a negative eigenvalue represents a possible 
bifurcation branch.

Two alternatives exist for buckling mode injection. The eigenvector may be added 
to the total displacement vector or it may be handled as an additional external 
load. The latter approach is chosen in the present formulation and for an 
intermediate load step the incremental equations read:

where c is a scaling factor.

Unfortunately, the eigenvectors carry no information about the sign. It is also 
noted tharfc the eigenvector is orthogonal with respect to the load vector for 
proportional loading so that the incremental work of the external load vanishes. 
In general this is not the case for nonproportional loading.

A possible way of calculating the signs is to impose the condition that the 
angle between the eigenvector and the total displacements should be minimum or

M j  = wjO j (5.18)

KjAr1'0 = cOj (5.19)

rT0j > 0 (5.20)
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A possible approach is to consider the bifurcation load as a new load case and 
perform the bifurcation separately (analogous to simulation of fracture).
In the present formulation the bifurcation load is considered as a separate 
load case which the user has to include manually during a restart analysis.
The procedure for generating bifurcation load data as well as control of 
the subsequent restart analysis, is described in Section 4.7 of the 
USFOS Users Manual.

I
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6. MODELLING OF DENTED TUBULAR MEMBERS

6.1 Introduction

This section deals with modelling the structural properties of dented and 
distorted tubular members. Such damages are typically due to impacts from 
supply vessels and dropped objects.

For an accurate simulation of the behaviour of the damaged element a nonlinear, 
shell element modelling of the dented section would be required. However, it is 
very difficult to perform such analyses properly and they are often time- 
consuming and costly. For this reason various simplified techniques have been 
developed. Some methods are based upon the conventional finite element techni­
que where the dent is accounted for by using empirical reduction factors for 
yield strength and material stiffness /23/. Other methods use the stress 
resultants directly. By idealizing the dent geometry and stress distribution, 
analytical integration over the dented cross-section is made feasible /24/.

The work discribed in Ref. /24/ has resulted in a computer program DENTA for 
residual strength assessment of damaged tubular members. It combines numerical/ 
analytical techniques with empirical relationships. It has been verified by 
comaprisons to a large number of experiments (108) with scale models of damaged 
tubulars. On the whole, the same technique is also used in USFOS although some 
of the details have been omitted.

6.2 Idealization of Dented Tube

Two damage modes are considered, namely

- lateral distortion of tube axis; the cross-section remains intact
- local denting/ovalization of the cross-section

Lateral distortion of the cross-section can be considered as an initial imper­
fection. This has been considered in Section 2.4 and is not described further 
in the present section. It should be observed, however, that the procedure in
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Section 2.4 is based upon an initial stress free deflection. If residual 
stresses are to be included, the damage process itself must be simulated.

As shown in Figure 6.1 the dent is assumed to extend over a finite length of 
the beam with two adjacent undamaged sections. Further, the dented section is 
idealized so as to consist of two parts; the dented part of the cross-section 
and the undamaged part.

!
H—

Figur 6.1 Idealized model of dented element

The derivations are based upon the following assumptions

i) The length of the dented section is small compared to member length. Hence, 
the effect of the dent on the elastic element stiffness is neglected, both 
with respect to reduced flexural rigidity and eccentricity in the dented 
region. These effects are considered to be of minor importance compared 
to the reduction in plastic capacity and possible lateral distortion of 
member axis.
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ii) The dent influences the plastic cross-sectional capacities of the cross- 
section. The eccentricity of the neutral axis caused by the dent is 
accounted for.

iii) The dent may occur either at midspan or at beam ends.

These assumptions are very convenient with respect to implementation of the 
dented element model. Most of the revisions can be isolated in a separate 
module related to determination of plastic cross-sectional capacities. The 
location of the dent at midspan or at beam ends is somewhat restrictive. On the 
other hand, calculations show that the results are rather insensitive to 
moderate changes in dent location relative to beam midspan.

6.3 Plastic Potential for Dented Section

The fully plastic stress distribution for the damaged section is shown in Figure 
6.1, assuming the dent in compression.. By integration the following axial force­
bending moment interaction emerges

„ N-N, , N-N,_ M ,ir dp . a. 1 v dp _ ,» ,.
F =   cos<2 -jj— ^ + 2* + 2 sina “ 2 1 — ~ sina = 0 (6.1)o 0 0

where

V  M0 = plastic capacities in pure compression and bending, respectively
H = R(sino/a-coso)

D ,
a = arcos(1 -

I

"dp = CdpoyD«U4n2+t!)2-2il)

Cjp = 80-t/D

Njp signifies the plastic capacity of the dented, flat section. It is assumed 
to remain constant in the post-collapse region. It is derived from single flat, 
bent plate analogy. C^p is an empirical correction factor. It accounts for 
restraining effect from the undamaged part of the shell for D/t ratios less than 
80. For D/t > 80 it reduces the strength, in order to account for second order 
bending effects for very high wall slenderness.
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By setting the dent depth = 0 it is seen that equation 6.1 condenses to the 
ordinary plastic interaction relation for undamaged tube.

In the post-collapse range the dent starts to grow. On the basis of significant 
experimental evidence it is found that the current dent depth, can be con­
sidered to be a function of the nominal geometry and the axial force level rela­
tive to the ultimate axial force. By regression analysis the following expres­
sion is obtained

Ddg = Dd + Glfgi(N' V  V  + G2fg2(N' V  V  (6-2)
where

= dent depth at the onset of plasticity

G1 = 2.54-10”3 D/t + 5.093■10” 5(D/t)2 - 3.465•10”7 (D/t)3 > 0
G2 = 3.056(Oy/E)(D/t) + 8.024Gi - 29.240^ + 34.12G 3 - 0.8525 » 0

f - DU1-N/N )2 '8 - (1-N./M ){1 - - ) 1 -8] 
y i u "o

M N -N)
f = 0.25D11 - -~)sin(| )
y2 U U

where

Ny = ultimate axial force in the member; it remains constant in the post­
collapse region

In calculation of the gradient to the yield surface the partial derivative of 
dent dept-with respect to axial force is required. It is found practical to 
perform this numerically due to the complexity of equation 6.2.

6.4 Extension to 3 dimensions

The fully plastic interaction relationships become significantly more complex 
under general 3-dimensional loading. As indicated in Figure 6.3 the plastic 
neutral axis is generally not parallell to the resulting bending moment due to 
the cross-sectional unsymmetri caused by the damage. A major task in the subse­
quent derivations is to determine the inclination of the neutral axis with 
respect to the y-axis for a specified direction of the resulting bending moment



(specified by the inclination 8). Depending on the stress distribution, 12 
different cases need to be considered, in order to establish the complete 
interaction relationship, which generally takes the form /25/

M M -  —
r = ( ( ~ ) 2 + (— ) V  - (A2 + B2 )2 = 0

yo zo
The following quantities are defined

M
= arctan rr- , 0 < 0 < tt My

t = arctang f  » " f  < t  < |

(p — 0 - T

A and B are calculated as follows

Case 1: 0 < <p < a ir - a < (p < ir

a) 0 < f < i r - ( a  + ip), M  ̂0y
1 , °dp. N .

= 2 u  ' (1 ~ ~ ) a "y o
, • i ,i dp.A = sin-f - 2 (1 - ^-£-) sina cosip

1  ̂̂
B =  ̂ (1 ~ )sina sintp°y

b) ir-(a + q>) < f $ ir-(a-tp), My > 0

1 =

ir( 1 + ■^R ) + (tp - a) (1 
_______Y______________

a
- 2, a_o Ny_________o

3 + dp

(6.3)

(6.4)

(6.5)



6.6

1 °r! O ,A = j [(3 + ~̂ )sin-r - (1-— )sin(a - <p)]
y °y

B = --(1 - — )̂ (cos(a-q>) + cos-r)

c) ir-(a - ip ) < f  < TTt M » 0y

[N_ _N a 1
f = -it

1 + dp

A = 1 ,, . dp, .
2 (1 + T ~ )sin^y

B = 0

d) 0 < f  < ir -  (a+q>) M < 0y

■' ’5 (1 + r >o
A = -sinT

B = 0

e) ir-(a-<p) < ir-(a-<p) M $ 0y

N

f =

a , a ,
ir(1 + — - )  + (a  -  ip)(1 -  + 2tt ^
_______y_________________ °y_______ _o

3 + dp

A =- j  [(3 + -^)sini + (1- -^)sin(a + tp)]

B = 1 ^dp
-  ^(1 -  — ^) {cos(a+tp) + c o s t )

°y



f) Tr-(a-ip)  ̂ t  ̂ tt, M < 0 y
o, a, „,< dp* . , dp , N ,a-H - — J-) + tt(— 1- + Jr-)a a Ny y o

1 -------
1 + ay

1 °do °
A =- 7 [(1 - -^)sina cosip-(1 + -£• O Oy

1 °dB = ^ ( 1 ---— )sina sinf
°y

Case II a < <p  ̂ ir - a

a) 0 i y ( ir -(a+ip), > 0

y, A, B as case la.

b) ir-(a+p) y < Tr-(ip-a), I

•Y, A, B as case 1b

c) ir-(ip-a) < -y < ir M > 0z

TT , - N .
T ^  (1 N 0

A = sin-Y 

B = 0

d) 0 < *y < ir-(a+ip), M < 0z

— )sin-Y]
y

•Y, B, A as case Id



e) ir-(a-Hp) < y $ ir-((p-a) M < 0z

f, B, A as case 1e

f) Tr-(ip-a) « f < tt, M  ̂0z

1 = \ [id + — ) + (1 - ~^)a]
Q y

1 ^dpA = -sin-Y + -?r( 1 - — -)sina cosip i. a y

B = -(1 - — -)sina simp i ay
It is seen that t  depends on A and B, which themselves are functions of t . 

This problem is solved by an iterative procedure where t is updated once -y, A 
and B have been calculated. The process converges normally rapidly.
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7. TEMPERATURE EFFECTS

7.1 Introduction

The structural resistance to thermal loading consists of two aspects

- heat transfer analysis
- structural response analysis

The first element concerns calculation of the unsteady conductive, convective 
and radiative heat transfer and is not dealt with in USFOS. Rather, it is 
considered to be known and given as input to USFOS.

The second element concerns assessment of the critical temperature with respect 
to progressive collapse and the time to reach this state for a given temperature 
field history. Only these aspects will be considered.

The structural response is mainly affected through the following thermal and 
mechanical properties

- thermal expansion
- the elastic modulus
- the yield strength
- creep

The effect of creep is not included in the present model.

7.2 Beam Element Formulation

7.2.1 Basic assumptions

The temperature distribution assumed is illustrated in Figure 7.1. The tempera­
ture is assumed constant in the axial direction but varies over element cross- 
section accroding to
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Figure 7.1 Temperature distribution.

t - t0 + PzY + 3z-z (7.1 )

where t0 is the temperature at some reference temperature axis. The temperature 
gradients in y- and z-direction are defined by

3„ =
at
6y

t -t
yu y1hy

and

3 = f  =3z
t -t zu zl
h

where

(7.2)

(7.3)

t ,t = temperature at yu zu
z-axis)

t ,.t , = temperature at yl zl
z-axis)

h , h^ = height of cross-section in y- and z-direction, respectively

The stress-strain relationship for a point with coordinates (y, z) relative to

upper face of cross-section (positive y- and

lower face of cross-section (negative y- and
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the temperature reference axis is given by

a = E (t0, y, z){e - a(t0, y, z)t(tQ/ y, z)} (7.4)X  S X

E = current (secant) elastic modulus sa = coefficient of thermal expansion

In the following it is assumed that E and is constant over the cross-sectionsbased upon an average temperature. The expansion 3 coeeficient is only mode­
rately dependent on the temperature and is therefore also assumed constant.

7.2.2 Equilibrium equations

On the above assumptions it is convenient to let the temperature coordinate 
system coincide with the local element coordinate system. The potential energy 
for the heat affected element takes the form

0 -  1  J  .  1  v , x *  .  1  w , x 2 -  <xt0 } * d x

* 2 { V z |v'x* * aV 2d*

* 2 { V z |W’x* * a|5z|2dX

The first variation of strain energy comes out to be

(7.5)

1Su = r EAu, 6u, dx
0 x x
1

+ J E I (v, 6v,Q S Z X X  X X
N v, 5v, }dxE l  ' x ' x.’ s z

+ J E I (w, 6w,P s y xx xx
N v, 6v, }dxE l  'x 'xx' s z
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J  (N + E Au, )8u, dx 0 s x x

+ J  e i a(3 5v, dx + J  e i a(3 5w, dx J s z z xx g s y y xx

where
1 1 N = -E Afu, + —  v, 2 + — w, 2 - atn) s 1 'x 2 x 2 'x D/

(7.6)

(7.7)

The first terms in Eq. (7.4) are recognized as the conventional equilibrium
condition (Eq. (2.17)) expressed in total displacements and current secant
elastic modulus E .s

The last two terms represents the forces corresponding to the increase of curva­
ture due to the temperature gradient.

7.2.3 Incremental equations

The variation on incremental form is expressed by

6(U + A U) = J(Eo+ A EJA{U>V+ A u , x + -  (v,x + Av, j 2s s

-  (w,x + A w ,v )2 - a ( t 0 + A t 0 )}{6u,v + ( V , v + A v , v )6v,
X  x (7.8)

(w, + Aw, )6w, } d xX-, x  x J

J  (E + A e  )i (V, + Av, + afi + aA(3 )6v, dxs z xx X X y xx

J  (E + A e  )i (w, + Aw, + ap + aA|3 )5w, dxs y xx xx z xx (7.8)
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Incorporating 5u from Eq. (7.6) gives

5Au = 6(u + Au) - 5u

= f E aAu , 6u , dx g s x x

+ j E I (v, 5v, - — — —  Av, 6v, )dx„ s z xx xx E l  x x0 s z

+ f E I (w, 5w, - ~ —  Aw, 5w, )dx” s y x x  xx E l  x x 0 s z

+ remaining nonlinear terms in Eq. (2.21)

II
+ P E I aA(3 6v, dx  + f E I aA(3 6w, dxo O  T7 vv 'J o rr r •? vv

I

s z  y xx “ s y  z xx

E AaAtn (6 + v, Ov, + w, 6w, )s U U, X  X  X  X  x

(7.9)

III

f A n  6u, dx  
0

A n+ F Ae  i (v, + afi )6v, - A_ - v, 6v, )dxt s  z' 'x x  vy xx  Ae I x x'0 s z

+ J  A e  i (w, + aP )6w, - -r—  _ w, 6w, )dx•L s y x x  z x x  Ae I x x O ' 1 s y

+ higher order terms.

w h e r e

A n  = A e  a { u ,  + ^  v, 2 s x 2 x at0) (7.10)

USFOS-TM/1993-04-01



USFOS Theory Manual

Temperature Effects

7. 6

The incremental equations consist of three contributions:

I : Incremental stiffness for isothermal deformation, identical to Eq. 2.21

II : Load increments in bending moments and axial force due to temperature
increment. Nonlinear terms due to beam rotation contributes to the 
incremental axial temperature force.

Ill: Load increments due to change in elastic modulus.
By introducing the approximation

An  ̂N_
Ae ~ E s s

the modification in load is obtained by means of the secant stiffness
matrix scaled by Ae /E and multiplied by the total displacements.s s

7.2.4 Modification due to yield stress degradation

The reduction of yield stress at elevated temperatures causes a shrinkage of the 
yield surface. For members with plastic hinges this shrinkage will cause the 
stress resultants to depart from the yield surface. However, this effect can be 
accounted for, by including in the consistency criterion Eq. (4.111) an addi­
tional term, which represents the change of the yield surface due to the 
temperature increment:

Af = Aft=constant AfAt = o

The second term takes the form

(7.11)

Ao
ZiFAt = '9 'S ~aZ (7*12)

y

g  is the vector of partial derivatives of the plastic potential with respect to 
each force component (Eq. (4.92)). S is the vector of stress resultants as given 
by Eq. (4.89).
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Comparing Eq. (7.12) to Eq. (4.103) it is seen that the change of yield stress 
can be considered to produce a contribution to the increment of the consistent 
nodal forces equal to

Ao
AS = - s ^  ( 7 . 1 3 )

y
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7.3 Plate Element Formulation

Thermal Expansion

Thermal expansion effects are accounted for in a similar way as for the beam element by introducing 
equivalent incremental temperature forces.

A  linear temperature distribution between the nodes are assumed as shown in Figure 7.2. 
yi

Figure 7.2

The objective is to develope the equivalent thermal nodal forces due to a temperature increment AT. 
First, the incremental initial strain matrix consistent with the temperature increase is written as:

Ae* a r2 ai3 a t ;

Ae - *T< - c at; a t 2 a 7-3 Ar4

AV 0 0 0 0 _

7.14

where the factor c is given by

i) c = a for plane stress state
ii) c = (1 + v) a for plane strain state

v is the Poisson ration and a the thermal expansion coefficient which here is assumed independent of 
the temperature.
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7.9
Introducing the interpolation matrix of bilinear interpolation functions N, the incremental nodal initial 
strain vector is given by

Ae„ - Ae • N  7.15

The incremental equivalent nodal temperature force vector is then given by

A S  r - /  P T E Ae„ d V
v

where the elasticity matrix for plane stress state is given by

'1 v O '
v 1 0

0 0 —2

7.16

Tire elastic modulus should be calculated on basis of the average plate temperature when setting up 
die elasticity matrix E:

T E

where

P 7*i i

1 0 0 0
0 0 0 1 ;7.18

0 1 1 0

and J'1 is the inverse of the Jacobian matrix and PN contains the derivatives of the shape functions N; 
with respect to the natural coordinates (x, y)

dx dy

dx dy
_dn dn.
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0 1 1 1 & 0
"l. 0 1 1 1 h 0
0 ---  0
0 Nu ---  o

Yield Stress Degradation

The yield stress temperature dependancy is governed by the ECCS curve given in Figure 7.2.

Equivalent to the beam element formulation, the yield stress decrement caused by an temperature 
increment, is accounted for by introducing the load term AS0, see Figure 7.3.

. Aa„ _ Aa 
A S 0 - — I  S - — l / - 1, 8 7.20

where S is the plate element total internal restoring force vector, Aoy is the yield stress decrement due 
to AT and Oy is the yield stress at the current temperature which is taken as the element average 
temperature.

Figure 7.3

S.

The equivalent load term given by (7.22) is only introduced when yielding has occured.

Elastic Modulus Degradation

The elastic modulus temperature dependency is given by the ECCS curve shown in Figure 7.4.

USFOS-TM/1993-04-01



The equivalent load term due to the change in the elastic modulus is, as for the beam element, 
approximated to:

ASE-^! k‘{v- v7)
E

where ke is the elastic stiffness matrix, v the nodal total displacement vector and v* the total nodal free 
temperature displacement vector.

7 . 1 1
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7.4 Mechanical properties 

7.4.1 Structural Steel

Experimental data of the degradation of elastic modulus and yield strength at 
elevated temperatures show a wide scatter.

The following approximate relationships, proposed by ECCS /26/, have been 
adopted

t 0 < t < 600°C (7.22)a (20)y + 767 In(t/1750),

17.2■10 ~ 12t 4 0 < t < 600°C (7.23)

The relationships are also depicted in Figure 7.4.
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Figure 7.4 Temperature dependence of yield stress and elastic modulus according 
to ECCS.

The coefficient of linear expansion of steel shows a small variation with 
respect to temperature. However, in the present version of the program it is 
assumed constant.
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8. LINEAR DEPENDENCY
8.1 INTRODUCTION

This section describes how linear dependent degrees of freedom (dofs) are imple­
mented in USFOS. The method is useful in modelling structures where there, for 
some reason, are information available indicating that one dof can be expressed 
as a linear combination of other dofs. Such structures are for example jackets 
with internal piles in the legs. The pile is free to move axially within the 
leg, but constrained to follow its lateral displacements. Also, internal hinges 
can be modelled. It is a special case of the general, linear constraint 
equation defining a slave dof.

8.2 DERIVATION OF KINEMATIC CONSTRAINTS

Linear dependency is defined by one slave node and a master element. The user 
defines which degrees of freedom (dofs) to be subjected to kinematic constraints. 
The actual coupling coefficient is calculated by the program, based on the loca­
tion of the slave node relative to the nodes of the master element. The coeffi­
cients are updated for each load increment.

Internal hinges are modelled by specifying two nodes at the hinge and then 
couple the degrees of freedom that are to be equal. In this case the slave dofs 
are only coupled to the master node located at the hinge.

Figure 8.1 shows the coordinate systems used to establish linear dependencies.
The slave node is denoted by s and the "master" element length is lm. The 
local coordinate system {xm, ym, z'̂ f of an element connected to nodes mi, mj 
constitutes the set of three orthogonal vectors.

gLet x denote the position vector of s in the local coordinate system. The mo 1
position vector in deformed configuration reads

sxm
sx + mo

-sum (8.1)
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_ gwhere is the vector of pure translation displacements. The displacement 
vector in local coordinate system with all nodal parameters is defined by

sum
s s s *s *s As (u , v , w , <D , 0  }m ra ra xm yra zm

A parameter |3 is defined such that

sX m
Km

(8.2)

(8.3)

and is a measure of the relative position of the slave node in the local 
x-axis.

Figure 8.1. Coordinate systems for linear dependencies.

The following linear dependencies can be specified for the incremental displace­
ments of the slave node.
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Aum = [(1-3), 31
A  u 1 ra

A u jm
(8.4)

Avm = [(1-3), 3]

Awm = m-3), 31

A v 1m Acp1xm
A v jm

- [(1-3)zS, 3z^Jm ra Acp-*xm

Aw1m
+ [(i-3)y^/ 3y®]

Acp ixm
Awjm Acp ■*xm

m m

(8.5)

(8 .6)

A(Pxm = Pi
Acp1xm

xm
(8.7)

Acpym = [(1-3)/ 3]
Acp1ym
Acpymj

(8.8)

AtPzm = H1-.P), 3]
Acp1zra
Acpzm

(8.9)

It is emphasized that the slave node is forced to move relative to the planes of 
the local coordinate system of the master element. If the slave node is located 
significantly off the x-axis of the master element, torsion of the master ele­
ment implies large lateral displacements of the slave node. For this reason, 
the coupling to torsion in eqs. (8.5) and (8.6) may be supressed by the user.

Formally, let C represent the constraints imposed on the slave node such that
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A u jra
(8 .1 0)

The corresponding relationship to the global degree of freedom is given by

C T L m m (8 .1 1)

where Tm = [Gm Gm |Gm GmJ is the matrix of direction cosines between local and 

global systems for the "master" element and Lm = fEm1, EmJj is the transforma­
tion matrix due to eccentricity.

For an element end connected to a slave node, the displacements in the local 
system must first be transformed to the special coordinate system, m. This is 
given by

-T A s T *Au m m

where

[g G 1 T = [g G I1 K KJ m 1 m mj

The stiffness transformation for element K now reads

(8 .1 2)

kk = T K T* k T* (8.13)

where

B i -T T E T K K m C T Lm ra
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The transformation is indeed only carried out for the degrees of freedom of the 
slave node which are actually subjected to constraints. The remaining degrees 
of freedom are treated as independent and are solved in the local coordinate 
system.
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9 LOCAL FLEXIBILITY
9.1 Introduction

Most of the framed structures used in the offshore petroleum industry consist 
of tubular members.
It is common to idealize the structures to consist of beam elements only, and 
shell effects at the joints are neglected.
This "node flexibility" influences the behaviour of the structures, and 
the force patterns change.
Except simple analytical methods, supereleraent technique is the present tool to 
consider these effects. The tubular joints are then modelled using finite 
elements and each joint will represent one superelement.
At sections in sufficient distance from the joint, the tube properties are 
transferred to a beam by using a Navier transformation.
Beam elements are used between the tubular joints, and a realistic structural 
model is obtained.
However, this technique is time consuming and costly, both with respect to 
computer time and to the manhours to produce the required input for the 
finite element analysis program. The technique described has been used 
for monitoring a build structure.

In the following a technique for calculating a transition element between 
braces and chord is presented. The computer time consumption using this 
technique is less than 1/100 of what the supereleraent technique requires.
In addition, no manual modelling is required. The transison element takes care 
of the shell properties of the joint, and makes an integrated shell/frame 
analysis possible. A complete shell analysis of each selected tubular joint is 
performed during the generating of the structure's system stiffness matrix. The 
shell analysis results in the stiffness properties of the actual tubular joint 
transition element.
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9.2 BASIC

The technique is based on the solution of simply supported shells subjected to 
highly concentrated distributed loads. The loads are: Radial load, tangential 
load, moment about X- axis and moment about Y-axis.
Donnell simplifications of the differential equations for the circular 
cylindrical shell are made, and a Galerkin solution technique is used. 
Trigonometric series are suggested as displacement functions in the Y- and Z- 
directions. The displacement of the middle surface in the X-direction is put 
equal to zero all over, and will then exclude the global beam bending mode.

9.3 MODELLING OF A  BRACE/CHORD CONNECTION

Before introducing any simplifications on a brace/chord modelling, it is 
neccessary to look at the basic load-carrying behaviour of such a connection.

Fig. 1 defines a Y-joint, the angle of inclination, 9, and the global 
Z-axis.
The special case, 9 = tt/2, defines the so called T-joint.
Fig. 2 shows a section through the T-joint and defines the circumferential 
angle, cp, in the leg.

USFOS-TM/1989-12-01



USFOS Theory Manual

Local Flexibility
9. 3

Figure 2 Section through T-joint

The loads have to be transferred from the braces, through the joint to 
the chord. The stiffness in the global Z-direction of the chord surface is a 
combination of radial and tangent stiffnesses.
At a point , (p=0, only the radial stiffness contributes to the total stiffness 
in the gl&bal Z-direction. Moving along the arc perpendicular to the generatrix, 
contribution from tangent stiffness will increase. For cp = tt/2 , only the 
tangent stiffness contributes to the total stiffness in the Z-direction.
The tangent stiffness is assumed to be much larger than the radial stiffness.

The local stiffness against rotation about the intersection curve also 
contributes to the total stiffness. This rotation stiffness varies along the 
intersection curve. The resulting stiffness in global Z-direction will then vary 
along the intersection curve between brace and chord.
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The following two assumptions are made:

• The stiffness of the brace wall in the global Z-direction is much larger than 
the stiffness of the chord surface in the same global direction. Thus, local 
deformations of the brace end in the Z-direction is disregarded.

• Stiffness properties of the brace ends are constant along the intersection 
curve.

As the brace diameter relative to the chord diameter, the so called P-ratio, 
increases towards 1.0 or alternatively, the angle 9 reduces, these assumptions 
become less valid.

The two assumptions imply that the intersection curve between brace and 
chord does not change its shape. The intersection curve moves as a rigid body 
only. It is then possible to express the displacement in the global Z-direction 
along the intersection curve by the degrees of freedom in one reference point.

9.4 STIFFNESS MATRIX FOR DEGREES OF FREEDOM 
ON  THE CHORD SHELL SURFACE

A more exact tubular frame modelling requires extra degrees of freedom on the 
chord shell surface.
A global chord surface node means a node that later will be used in the global 
frame modelling and defines a brace beam end.
The degrees of freedom in these global nodes, here called global degrees of 
freedom, will be included in the total system analysis.
Only three degrees of freedom per surface nodal point are expected to influence 
the behaviour of the frame.
These are:

• Translation in the direction of the Z-axis
• Rotation about the Y-axis
• Rotation about the X-axis
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See fig. 1 for definition of the global coordinate system.

The three remaining degrees of freedom are assumed to be linearly dependent on 
the chord centre degrees of freedom.
Fig. 3 defines the global degrees of freedom on the chord shell surface. These 
are assumed to be independent of the chord center degrees of freedom.

Figure 3 Independent chord surface degrees of freedom in a K-joint

Local degrees of freedom mean degrees of freedom on a brace/chord intersection 
curve that is used in the local shell analysis and will not be included in the 
total system analysis. The local degrees of freedom are eliminated, and the 
resultant properties of the brace/chord connection will be expressed by the 
global decrees of freedom.
Fig. 4 shows the global degrees of freedom on the chord shell surface and 
defines the local degrees of freedom along the intersection curve.
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Figure 4 Local degrees of freedom along the brace/chord intersection 
curve and the global surface node degrees of freedom

The connection between the local and the global degrees of freedom will be 
expressed as follows:

The global chord surface node is assumed to be situated where the brace tube 
centre line meets the chord shell surface, see figs. 3 and 4.

Figures 5 - 7  describe the assumed rigid body displacement of the brace/chord 
intersection curve caused by axial load , in plane moment and out of plane 
moment irT'the free end of the brace.
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Figure 5 Translation 
of intersection curve 
compatible with a Z- 
translation of the global 
surface node

Figure 6 Rotation Figure 7 Rotation
of intersection curve of intersection curve
compatible with rotation compatible with rotation
of the global surface of the global surface
node about the Y-axis node about the Y-axis

The local Z-displacement is expressed by the global degrees of freedom by the 
following relation, see fig 4:

v1
L Rsincp

In practice, the compatibility conditions for the displacements in the 
Z-direction are satisfied at discrete points along the intersection curve only, 
see fig 8 The intersection curve may in general be of arbitrary shape.
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Figure 8 Simulation of a brace/chord connection

For a tubular joint, a varying number of internal shell surface nodes take care 
of the boundary conditions on the intersection curves.
The interaction between all internal degrees of freedom , expressed by a 
stiffness matrix, are established by inverting the corresponding flexibility 
matrix. The classical shell solutions described above are used for calculating 
the flexibility matrix.
The degrees of freedom at each internal surface node are:

• Radial displacement
• Tangent displacement
• Rotation about the tangent to the intersection curve

The linear dependancies between the degrees of freedom at the global surface 
nodes and the internal degrees of freedom at the intersection curves make it 
possible to eliminate the internal degrees of freedom. The properties of the 
intersection curves are then expressed by the degreees of freedom at the global
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surface nodes only, resulting in the stiffness matrix for the so called 
"shell property element".
Figure 9 shows a K-joint and fig. 10 describes the suggested frame model that 
consider the shell effects at the joints.

Figure 10 Suggested tubular frame model 
that consider the local shell behaviour.

The stresses in the chord caused by the four concentrated loads, radial 
load, tangential load, moment about the X-axis and moment about the Y-axis are 
calculated. The total stresses in the chord are obtained by superposition of 
contributions from the four load components at each internal node.
The intensity of the internal loads along the intersection curves are calculated 
by solving equations based on the above assumed rigid body behaviour of the 
intersection curves.

9.4 EXAMPLES

The behaviour of the method is illustrated by some numerical examples.

The above described boundary conditions between brace and chord curve are 
satisfied at discrete points at the intersection curve only. Figure 11 
illustrates the effect on stiffness and stress when varying the number of 
internal nodes,NPOINT. In this example the d/D - ratio is 0.5.
Other d/D -ratios used in practical design give similar convergence.
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The number of internal nodes is chosen equal to 24 in the following examples.

Figure 11 Stiffness and stress dependence on the number of internal nodes 
used to describe the brace/chord interaction

The resultant displacements in the chord at section X = L/2, due to loads in a 
simulated brace end are illustrated in the following. Figure 12 and 13 represent 
axial compressive force and out of plane moment, respectively.

I

Figure 12 Displacement along the 
curve, X = L/2 due to axial compressive 
load in the simulated brace end 
d/D =0.5

Figure 13 Displacement along the 
curve, X = L/2 due to out of plane 
moment in the simulated brace end 
d/D =0.5
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Figures 14 and 15 show the displacement field along the generatrix cp = 0 due 
to axial force and in-plane moment at the free end of the brace, respectively.

ANJ

i
SYMM.

Figure 14 Displacement along the 
generatrix , (p = 0 due to axial 
force at the simulated brace end. 
d/D =0.5

A5YMM.

Figure 15 Displacement along the 
generatrix , (p = 0 due to in-plane 
moment at the simulated brace end. 
d/D =0.5

The displacement fields have reasonable shapes.

Flexibility properties of 16 T-joints and 2 K-joints are compared with 
corresponding FEM-results obtained from the SESAM programme. The (3-ratios are in 
the range 0.25 - 0.95, and there is good accordance between the results from the 
two techniques, (+/- 10-15%).

The resultant stresses in the chord due to loads at the free end of the brace 
are calculated for two T-joints with d/D-ratio = 0.25 and 0.65, respectively.
The results from the above described technique and conventional FEM solutions 
are compared. Figure 16 gives the element mesh used.
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Figure 16 Element mesh used in the FEM analysis

The a -distributions along the intersection curve are shown in figs 17 and 18.
yy

Figure 17 Stress distribution along Figure 18 Stress distribution along 
intersection curve. P = 0.25 intersection curve. |3 = 0.65

As indicated in the Figures 17 and 18, the stress distributions match very well.

Hot spot stresses calculated, using the above described technique, are compared 
with corresponding results from FEM - solutions for 16 different T-joints. The
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results are in good agreement, within a range of +/- 10-15%.

Finally, an integrated shell/frame analysis of a deep water jacket is 
described, see Figure 19.

Figure 19 Element mesh of the jacket structure

The 12 marked joints in fig. 19 are modelled with, and for comparison, without 
use of the above described brace/chord transition element. In this special 
example 6 braces are connected to the joint, requiring 6 extra nodes per joint. 
The transition element consists of 7 nodes, one chord center node and 6 
global surface nodes.
For the other joints, conventional rigid joint modelling is used.
Both quasistatic analyses and free vibration analyses are performed. The change 
in brace end forces due to the two different structural models are of interest 
in connection with the quasistatic analyses. Only the change in natural
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frequencies are examined in connection with the free vibration analyses.

Wave data used in the quasistatic analyses are:

• Amplitude : 15.5 m
• Period : 20.0 s
The wave moves in positive X-direction. The water depth is 340.0 m.

The frame analysis, included shell analyses of the 12 selected nodes requires 
about 15.0 minutes CPU at a Norsk Data's ND 570 computer,{3.5mips). 
Corresponding CPU time-consumption using the Superelement technique, is about 
3 days. The difference in modelling time between the two methods is of the same 
order as the CPU time-consumption.

Different results are observed at both quasistatic and dynamic analyses.
The bending moments at the brace ends are primarily influenced by the node 
flexibility, (up to 400% increase). Figure 20 describes a typical behaviour of 
the bending moments during a wave periode, (step 1 to 13), for a brace end.
The solid lines represent the conventional model, while dotted lines represent 
the model that includes "shell property elements".

O'if*]

Figure 20 Bending moments at brace end situated 100m below surface 

Similiar differences in bending moments are observed at the other brace ends.

USF0S-TM/ 1989- 12-01



USFOS Theory Manual

Local Flexibility
9. 15

A comparison of maximum axial forces at the braces is made, and the use of the 
"shell property elements" results in only a few percentage reduction of the 
axial forces.

The global stiffness of the structure is less severely influenced by the use of 
"shell property elements", and the dynamic properties are practically unchanged.

9.5 CONCLUSION

The method described above is effective, and makes integrated shell/frame 
analyses possible.
The properties of the transition element, or the so called "shell property 
element", are compared with corresponding properties of Finite Element 
solutions, and there is good accordance for simple tubular joints.

The above described technique determines the hot spot stresses as well as the 
distribution in the chord with good accuracy, but needing less than 1/100 of 
the resources compared with Finite Element solutions.
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10 FRACTURE CRITERIA
10.1 INTRODUCTION

Progressive collapse analysis by means of USFOS assumes implicitely perfectly 
ductile behaviour, i.e. rupture does not take place at any location. In 
practice the material endurance is limited, rupture may take place due to 
excessive straining possibly accelerated by local cracks. Hence, the capacity 
as predicted by USFOS may be overestimated.

An inherent problem with the plastic hinge concept used in USFOS is that no 
information is provided as to the strain level in the hinges. In fact, all 
strains are concentrated at one point of zero length, which means that the 
strains go towards infinity.

In order to develop a fracture criterion it is necessary to obtain a strain 
estimate. The purpose of the present study is to develop a simplified model, 
where the total strain is related to the plastic deformations in the yield 
hinge. The nominal strain is then compared with a critical strain derived from 
fracture mechanics principles (Level 3 method). If the critical strain is 
exceeded the member in question including its load effects should be removed in 
the subsequent analysis.
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10.2 ROTATION IN ELASTO-PLASTIC REGION

10.2.1 Rectangular cross-section

h

- ¥~~

Figure 10.1 Cantilever beam

Consider the cantilever beam in Figure 10.1. The cross-section is elastic when 
M < My. Once M = My yielding starts in the utmost fiber. For increasing 
bending moment the plastic zone spreads twoards the neutral axis. At the end 
the whole cross-section is plastified and the bending moment attains the plastic 
bending moment.

Figure 10.2 Strain distribution
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The distribution of strain in the elasto-plastic section is sketched in Figure 
10.2. When E0 > £y the stress 0 = CFy according to the assumption of linear 
elastic-ideal plastic behaviour. The corresponding moment is

h

M = 2 J 0 dy = Mpfl 
0 y 1

(1 0.1 )

where
Oyh2

= the plastic bending moment for rectangular cross-section.

The axial variation of the bending moment is expressed as
M - Mp (1 - -) (10.2)

From Eq (10.1) and Eq (10.2) there is obtained

The rotation in the elasto-plastic zone from the onset of yielding to an 
arbitrary point, Al, from the end is given by

2Ey 1/3 41£y
—  J 7 =  dx =
h fli / T f  3h

w h e r e  £ max d e n o t e s  £ 0 at Al.

This shows that the rotation in elasto-plastic zone for an ideal plastic 
material is bounded and approaches asymptotically the value 

4l£y

1 - (10.4)9 = X
M

1/3 2E0
dx
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Conversely, the maximum strain can be estimated from the total rotation

•̂rna x

1 - 3h
4le„

(1 0 .6 )

10.2.2 Tubular cross-section

ay

Figure 10.3 Stress distribution in tubular cross-section

Figure 10.3 shows the elasto-plastic stress-distribution in case of circular 
cross-section. The distance to the first yielding fiber is now described by the 
angle 0O.

The corresponding bending moment is given by

M M
P

8 q
sin0 o + COS0 q /2 (10.7)

In the same manner as for rectangular cross-section the axial variation of the 
yield zone is determined by

00
sin0 o + COS0°

(1 0.8 )
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The total rotation can again be found by integrating the curvature in the 
elasto-plastic region

e - JAl (10.9)

A closed-form solution is difficult to obtain. Approximately, there is obtained

e = 2 .3r
and

r°ma x

^ma x

1-— —  e
eyl

(1 0.1 0)

(1 0.1 1)
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10.3 ROTATION IN STRAIN HARDENING REGION

For large rotations strain hardening will occur. In the following the model 
shown in Figure 10.4 is used

Figure 10.4 Strain hardening model

The yield strain is assumed constant in the range £y < £ < £s. For strains 
exceeding £s strain hardening takes place with a maximum value, Aoy, for 
E = £ref + £s where £ref signifies a reference strain. The hardening follows a 
parabolic relation given by

Ao = Aoy (1 0 .1 2 )

10.3.1 Bending

For a tubular cross-section the strain hardening contributes to the bending 
moment as illustrated in Figure 10.5.
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£ c ay

Figure 10.5 Strain/stress distribution for a tubular cross-section 

The strain at an arbitrary fibre is given by

£ = £osin0 (10.13)

where £ 0 is the maximum strain of the cross-section.

The additional moment due to strain hardening is now given by

n
2

Am = 4 r zt A o y J
£osin0-£«

'ref
2 -

£osin0-£s
■sin0d0

'ref
arcsxn

(10.14)

= 4 r ztAo. 1 +
•ref 'ref

TT . es es- - arcs in —  - —
£ t-O ^0

1/2
eo .

’ eo '2 1 -
£s 2 3/2

• £ref. ieoJ
This can also be written

AM = 4 r ztAoy f ( £ 0 ) = 4 r ztAayf ( £max)
f ( e 0 )

^ (ema x )
(10.15)
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It is interesting to see that the maximum attainable moment is

Am = 4r2tAoy|̂  " fJ = 3.62r2tAay (10.16)

when £ s/£ 0 - 0, £0/£ref - 1. The constant 3.62 is, as expected, higher than 
3.14, corresponding to a linear stress distribution, but smaller than 4, 
corresponding to a uniform stress distribution over the cross-section.

For a cantilever, the bending moment varies linearly. Introducing a local 
coordinate system x at the point of strain hardening initiation, f(£0) must obey 
the relationship

f(£°> = x_
( ema x )

where ln denotes the length of the strain hardening region.

(10.17)

The total rotation in the strain hardening region is
1. _ 1.

0, 1! co ■■ ,
= J —  dx  = J ~  f"

0 r
1 ^(^uax ) lJ-n.dx (10.18)

It is very difficult to find closed form solutions to Equation (10.21) and 
approximate methods will be resorted to.

Rearranging, Equation (10.21) becomes

PErefih „h 1 e0 £s'- h esdx r
p . eref. 1 J r lh 0

where the parameter p is given by
emax~es

P = — -----Eref

(10.19)

(1 0.2 0 )
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emax is the maximum strain occurring at the beam end. Figure 10.6 displays how 
the nondimensional strain is distributed over the strain hardening region.

x/lh

Figure 10.6 Strain distribution over hardening region

Relatively speaking, the strain intensity distribution is larger for moderate 
strain levels as compared with high strain levels.

A reasonable approximation to the integral in Equation (10.22) is offered by the 
expression

£° £s] dx ..1.2 
e r e f  Ah 2+P

(10.21 )
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The length of the strain hardening region is found from

Aay
lh Am /m p
l = i+Am/mp = Aoy

uy

(1 0.2 2)

The relationship between f(£max) and p is shown in Figure 10.7.

Figure 10.7 f(£max) versus the parameter p 

The following approximation is introduced

^(^max) 1 . 4p
'max' 1+0 .5p

The rotation in the elastoplastic region is given by Equation (10.8)

(10.23)

0
eyi

eP * 2 .3r (10.24)

and
i 1 _ nx ep  1 4 0.215Ao,

1 + f ( C ma x ) ; 1 + i .4P hQy
(10.25)

1+0 .5p CTy
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Combining Equations (10.22, 10.24, 10.26, 10.27, 10.28) there is obtained

9 = + ®ep
£ re f  1 1 f 1 •2p A a y

r
1 +

f lo y ,.<p 12 * p
a y

Oy 1+0 .5P
e s Aoy 1.4p Cs i  1

£ r e f 1+0.5p T E r e f E s 2 .3  J

1 . 4p 
1+0 .5p (10.27)

Rearranging, there is obtained a second degree equation in p 

ap2 + bp + c = 0 (10.27)

where

Aoy
a = 1.68 --- +

°y
Aay

1.4 -—  + 0.215
°y

0r
' r e f £ r e f 1

0.5+1.4 (10.28a)

b =
Aoy Ey

2.8 - —  +  0.86 —oy es 'ref e r e f '1

Ao„
2 + 2 .8- (10.28b)

y 0rc = 0.86 ---- - 2
■ r e f e r e f 1 (10.28c)

Once p is solved the maximum strain is obtained from
Ec

-  e r e f  p + 'ref (10.29)

10.3.2 Membrane Strain

The yield criterion formulated in terms of stress resultants takes the following 
form for a tubular cross-section

f(ra, n) = 0 (10.30)
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where ra = M/Mp, n = TT/2 N/Np are nondimensional bending moment and axial force, 
respectively. The plastic increments in rotation and axial displacement are 
governed by the normality criterion, i.e.:

d0„ . 4 X | i | =P 0m 3M (10.31a)

ae- - ax f£ |sP 0n 6N (10.31b)

where dA is the plastic increment scalar. Combining, this yields

d9p 3f/3m 0m/0M
0f/0m ’ 0n/0N dUP

and

d0 p _1__
sinn

1
r duP

(10.32)

(10.33)

This shows that the plastic axial displacement divided by the radius can be 
interpreted as an equivalent rotation. This corresponds to distributing the 
axial displacement over the effective hinge length. Hence, the total rotation 
to be used in Equation (10.31a-c) is

The presence of axial force increases the effective hinge length as illustrated 
in Figure'" 10.8.
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The relative length of the plastic and elastoplastic zone is
J-ep My
- r  - n  - z~)M 1 (10.35)

Introducing the first yield Equation

4 My N 1 — —  + —  - i = oTT Mp N0

and the fully plastic surface

(10.36)

Mi TT N - cos —(1+CM)Mp 2 (1+CN)Np = 0 (10.37)

where CM and CN account for the hardening in the bending - and axial direction 
respectively. This gives

ep
1 p 1

4(1 "4 Np

(1+C„)cos-rr N (10.38)
2 (1+CN)Np

1 represent the length from member end to the inflection point and is obtained 
from the formula

Lmem

1
m 2

1 + «X

< 1 (10.39)
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where lmem is the total element length and M2 denotes the bending moment at the 
opposite end.

Combining Equations (10.41 and 10.42) there comes out
N-II _

1ep i
{1 -

7" - N.)
M,

1 (1+CM)cosTT N
M 1

2 (1+CN)Np
(10.40)

The augmentation of effective yield hinge length caused by the membrane force 
can then be obtained from

f = ^ep/^mem 
^■ep/^meni^ = ^2 0 )

1

1 J___
TT/4 
1 +CH (1 + CM)cos II N 

2 (1+CN)Np

(10.41)

The bending parameter is taken as
Aoy

CK ■ f|W  o T
For simplicity CN is chosen equal to Cm.

(10.45)
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10.4 FRACTURE CRITERION

A number of methods based upon fracture mechanics principles are available for 
determining the critical strain. Most of them are valid under pure elastic - or 
moderate yielding conditions. However, the advent of the Level 3 method /31/ 
allows fracture assessment to be performed on work hardening materials under­
going large strains, and is therefore appropriate for our need. The method 
utilizes the crack tip opening displacement (CTOD) as the fracture toughness 
input. The criterion is formulated as follows

®cr 1t
rray • a op ae EE 

E ^oy ( a + oa

\ °s
n 2 ^ . 2 (10.43)

where a is the flaw size, ae is the effective flow size given by

(Kr P )2
ap = a + —  e 2 u 0 2y 1 + °a

(10.44)

The primary stress Op is the result of the net force and moment acting on the 
stress-section, the effects of stress concentrations and crack-like flaws being 
ignored.

The stress intensity due to the primary stress is given by

KjP^ op (TTa)1/2 (10.45)

The secondary stresses, Os, are stresses which are selfequilibrating within the 
cross-section, being e.g. caused by residual welding stresses. In the present 
calculation they are ignored, i.e. 0S = 0 .

0a and £a designate, respectively, corresponding values of stress and strain as 
obtained in uniaxial tensile test. At the critical CTOD they attain the values 
Oa = Omax, ea = £max. Furthermore, Op = Omax. Combining Equations (10.46, 
10.47, 10.48) there comes out
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T T O y a
' c r i  t

0 2 umax

°y2

Ee„

20y 2 0,max 'max
1 +

(10.46)

It is noted that for large strains Equation (10.49) is completely dominated by 
the second term.

The procedure for controlling fracture is as follows:

Calculate Emax and corresponding CJmax from expressions in Section 10.3.
Assume appropriate flaw size, a. Calculate right hand side of Equation (10.49) 
and check whether

5 > 6cr1t (10.47)

If Equation (10.47) is fullfilled rupture is assumed.
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11 LOCAL BUCKLING OF RECTANGULAR CROSS-SECTIONS
11.1 INTRODUCTION

This section describes the methods method for taking into account the deteri- 
mental effect of local buckling of one of the side walls on the plastic capaci­
ties for rectangular cross-sections. The implementation is based on the 
following assumptions:

- The reduction in plastic load-carrying capacities of unstiffened rectangular 
cross-sections due to local buckling of one of the side walls is calculated.

Local buckling of stiffened rectangular cross-sections is not taken into 
account unless this can be adequately described by the model used for the 
unstiffened section.

It is assumed that buckling takes place in one of the two principal axes of 
bending. Once buckling is initiated this is not allowed to occur in the 
other direction.

- The buckle affects the bending capacity in one direction only, the other 
remains unaltered.

The interaction function used for intact cross-section is also valid for the 
buckled state.

The effect of "jamming", i.e. the strength increase due to direct contact 
between the two surfaces exterior to the buckled section, is not taken into 
account.

Kecman /32/ has carried out extensive experiments with rectangular and square 
section tubes. Figures 11.1 and 11.2 show typical collapse modes obtained in 
the large rotation range.
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Evidently, the cross-sections undergoing this kind of local failure are no 
longer capable of attaining the fully plastic capacities. For a reliable simula­
tion this must also be reflected in the large displacement/large strain calcula­
tions. Similar to the method developed for tubular cross-sections it is proposed 
that the local buckling effect is handled entirely within the plasting hinge 
concept. This is achieved by a proper reduction of the plastic capacities. The 
calculation of the reduced properties are based upon an assumed collapse pattern 
or yield line mechanism, which is entirely governed by the plastic rotation of 
the cross-section.

The proposed modelling of local collapse behaviour includes: 

a buckling criterion
calculation of reduced plastic capacities under local collapse 
modification of elasto-plastic stiffness matrix in accordance with the 
calculated reduced properties.
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Figure 11.1 (a) A typical hinge collapse mechanism with:
(b) cross section and (c) longitudinal section.
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Figure 11.2 Collapse modes in various rectangular and square sections.
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11.2 BUCKLING CRITERION

The collapse mechanism for the cross-section is triggered once local buckling 
occurs in one of the side walls, due to excessive uniaxial compression and rota­
tion. For this purpose a buckling criterion needs to be introduced.

The criterion may be based on conventional buckling formulas for plate elements. 
For thin-walled members buckling is predominantly elastic and a critical stress 
criterion may be used. For thick-walled elements showing pronounced elasto- 
plastic effects a strain criterion is required. In this case the total rotation 
and displacement at a node need to be transferred to an equivalent axial strain 
e.g. by the method used in the fracture control analysis. If this method is used 
the conservativeness in the code formulas should be appreciated. For our pur­
poses the mean buckling stress is relevant.

Conceivably, such a criterion is not very accurate, especially for low slender­
nesses. Alternatively, it may be based on experimental evidence.

The tests carried out by Keckam cover a large range of wall slendernessess and 
should constitute a good basis in this respect. Hopefully, these data can be 
provided.

Due to lack of experimental data, a simplified buckling criterion will tempo- 
rarely be used. The present implementation assumes that local buckling will 
occur as the force state reaches the bounding surface. This results in a con­
servative solution as the cross sectional capacity is limited by elastic wall 
buckling "8 r yielding, depending on the width to wall thickness ratio.

11.3 RESIDUAL PLASTIC CAPACITIES

The collapse mode observed during tests is by Keckam idealized by a yield line 
mechanism as shown in Figures 3 and 4. It consists of bending across statio­
nary yield lines and rolling deformation across travelling hinge lines, e.g. 
KA, GA, by which a part of the side wall becomes a part of the "top" flange.
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Figure 11.3 Hinge mechanism (a) at 
various stages of 
development (b).

Figure 11.4 The theoretical model (a) 
and its longitudinal 
section (b).

In order to obtain the reduced bending capacity, Kecman derived the total 
energy absorbed by plastic deformation up to a rotation angle 9. it consists 
of 8 contributions (for details of derivation, confer Ref. /32/).

EEF+GH = mpta (TT-0-p)

eBC = râ ta(TT-P)

EAB+CJ = 2mpwzA (n-P)

EBG + BE + CH + CF = 2TTrapwh

z A
e GK+EL+hn+fm = 4mpwb arct9 ( )

{(h-xA ")2 + (yA"-yB )2 } 1/2

USFOS-TM/1991-03-01



USFOS Theory Manual

Local Buckling of Rectangular Cross-sections
11. 7

EGA+AE+CH+CF = 4rapwzA ~

8 Z A
EKA+LA+NJ+MJ = j  mPw ~  ĥ2 + yBZ + ZA)1/2

e KN+LM+KL+MN = m pw'a (9 + ~  arctg 

where:

b 0 p = 2  arcsin (1 - - sin

0 0 g l / 2yA=YB = b C O S  - - {b sin j (2h-b sin p }

,8 0 0 0 , 1/z 0b sin2- - h sin j + {b sin ^ (2h-b sin ^)} cos f

ya
v, 4- 0h tg - - yB

1 + tg 2 1

V  = yA" • tg —

mpi plastic bending moment for a platestrip, dependent upon 
actuall wall thickness t1 (suffix t=topp, w=web, b=bottom)

r(0) = (0.07 - — )h em p i r i c a l  r o l l i n g  radius.

The wave length is selected as the minimum of the width/height of the cross- 
section

, .a bh = m m  -}

The total energy is found by summation 

8
E (9) = I E i (0) 

i = 1
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The bending capacity is obtained by differentiation with respect to 9 of the 
total energy. The derivative of the bending moment is also needed. Because of 
the complexity of differentiation this is carried out numerically, hence:

Mp( B)
e (9+A9) - E(8-A8) 

2A9

d {8 )
e (8+A8) 2E(8) - E(8-A8) 

A 8 2

In calculation of the reduced plastic axial capacity in compression the 
following assumptions are introduced:

The axial capacity in the bottom flange is not influenced by the mechanism. 
Using a finite strip approach the axial force in the top flange is determined 
from force equilibrium of a three hinge mechanism.
The axial stress in the side wall is assumed to remain at yield, because the 
corner nodes A, J constitute very stiff points with significant in-plane 
deformations. The reduction of axial load-carrying is thus only due to the 
geometric effects.

The axial force in the lower flange is accordingly:

NNK = °y'tb'a 

and in the upper flange.

Nhg
4  2mpt-a
, ,9 uh cos (- + p

Oy•tt•a
2 h cos 8+u

1 2

To avoid numerical problems this term is approximated to a straight line from 
zero rotation to the "jamming angle".

In the side walls:

USFOS-TM/ 199 1-03-01
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2 A
nKG + nh = 2 W 13 cos (arctg [------------------------- ]}

{(h-xa ")2 + (yA"-yB )2 } 1/2

The total plastic axial force is

Np(9) = NNK + NHG + n kg+nh

The reduced capacity of the upper flange causes an excentricity, which is given 
by

(Nhg - NNK)a
e = ye = ----—  ■■(■ Q)--- (negative for present choice of axis system)

The gradient of the plastic axial capacity is found by numerical differentation

dN (8) Nn(8+A8) - Nn(8-A8) 
d9 = 2A9

The axial force contributes to the bending moment through the excentricity 

M * M + Ne

Correspondingly, the partial derivative of the yield function with respect to 
axial force becomes

8f _ 3f 3f 
3N ~ 3N + 3M 6

-£>The calculation procedure described above results in a singularity in the calcu­
lation of plastic capacities at zero plastic rotation. In order to avoid this 
problem a transition curve (a straight line) is chosen to define the plastic 
moment capacity from onset of buckling to a specific collapse hinge rotation, 
denoted 8T, see Figure 11.5.

8t represents the plastic rotation when the straight transition line becomes 
tangential to the moment capacity curves respectively defined by the energy 
formulations in Section 11.3. This approach corrolates well with experimental 
results /32/.

USFOS-TM/ 1991-03-01
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Figure 11.5 Plastic moment capacity degradation curve due to local bucling. 

11.4 INTERACTION FUNCTION FOR STRESS RESULTANTS

The interaction function for the stress resultants for an intact cross-section 
is supposed to remain valid for a buckled cross-section. Thus, the only influ­
ence of the buckle is to reduce the available capacities in bending and axial 
compression (full capacity in tension).

The plastic capacity for bending in the other direction is assumed to be un­
affected oy the buckle. This is reasonable for moderate rotations. Further, the 
initiation of a local buckle is so dramatic that it is likely to govern the 
behaviour in the post-collapse region.

11.5 ELASTO-PLASTIC CONSTITUTIVE EQUATIONS

A basic assumption for the following derivations is that the buckling pheno­
menon is entirely confined to the hinges. The behaviour of the hinges are in 
turn governed by the plastic flow theory which states that

USFOS-TM/1991-03-01
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1 1 . 1 1

F(N, Q y , Q z , M x , My, M z ) = 0

3f dJL_ ifL £JL_ iE_,
dF " l3N 30 y 0 0 z 3 M X 8M y 3 M z

dN

dQy
d Q z

d M x
dMy

d M  z

=  g T  d S  =  0  

d v P  =  A A g

The yield criterion may also be written as

N_ Qy_ «y_ «z_
Np Qyp M X p Myp M zp } = o

It is now necessary to incorporate also a possible change of plastic capacities 
in the consistency criterion.

Accordingly,

3F 3FdF = -  dS  - — —  dS_ = 03S 3 S n P

where SD  ̂ - [ND, Qyp» Qzd' ®xd> ^ vd' Mzd]zp' lxp- y p ‘ z p is the vector of plastic capacities.
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Further,

3F a s  
a s  ( a s p

dSp) 3F
as Np dNi>

dQ'»* z p

S 1 -  d M > p“x p

dM),|>

"pP d"zo

0

In accordance with the previous paragraph it is assumed that the change of 
plastic capacities is governed by the kinematics of the cross section, in other 
words by the change of plastic displacement (Plastic rather than total displace­
ments seems to be a logical choice. This also renders a simpler calculation). 
This yields

P

dQ■*yp

M,

yp

r ~  dMzprlz p

N 6NP N 9NP N 6NP
n p aup Np vup .... Np a9zp

q 3®yp a a ° y p SL 8Qyp
Qyp Sup Qyp avp Qyp a0 zP

dMzp Mz 3MZP Mz 3Mzp
Mzp 3up NZp dvp .... Nzp a0zp

dup
dVyp

dvzp

a0xp
a0yp

. a0zp .

or

USFOS-TM / 1991 -03-01



USFOS Theory Manual

Local Buckling of Rectangular Cross-sections

11.13

N A K t

r  dNp*■ p

wyp

Mz
M dMzP llz p

CP • dvp

Introducting these equations into the consistency criterion there is obtained

dF = gTdS - gTCpdvp = 0

Further

dS = ke(dv-dvp) 
dvp = dXg

and

dF = gTke(dv-dXg) - gTCpdXg = 0

The plastic increment becomes

dX = {gT(ke-Cp)g}-1 gTkedv

and the reduced plastic stiffness matrix

dS = ke(dv-dXg) = [ke-keg{gT(ke-Cp)g}' 1 gTke] dv

This means that the contraction of the yield surface due to local buckling 
enters the scaling factor, given by the bracket expression, in the same manner 
as does the hardering effect. It is noted that there are only two non-vanishing

3Np 3Myp 3Mzp
terms in Cn for the present mechanism, namely tq— , Tq—  or —5— .daz p ot)z p ot)z p
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11.14

The partial derivatives are to be determined on the basis of the reduced plate 
properties derived in section 11.3. However, except for a few terms they are 
all zero.

In the present implementation of local buckling behaviour of rectangular sec­
tions, cyclic material behaviour is not considered. This implies that repeated 
plasticity in the yield lines of the local mechanism due to sequences of loading 
and unloading do not trigger rupture of the structural element. However, this 
option may be implemented in a later extension of the program.

The introduction of rotation dependant local buckling effects into the beam 
element stiffness formulation is shown in detail in Section 4.

(usfos-doc)usfos-tm-ll:text/1991-03-13
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12. DECK PLATING ELEMENT

A four node membrane element is implemented in USFOS.
The local node numbering and local coordinste system are described 
in figure 1 2.1 .

The element has 2 degrees of freedom per node and should be used in 
combination with beam elements (to avoid zero stiffness terms).

Figure 12.1 Membrane element

The element nodes may be eccentric connected to the system nodes.

The midnode of the beam element is not connected to the edge of the 
membrane element, see figure 1 2.2 .

Figure 12.2 Membrane element connected to beam with midnode

In addition the element acts as a "load-element" for pressure loading.
The total element load, (pressure x area of element), is distributed to the 
element nodes, (1/4 to each node), and transformed to the system nodes.
The pressure is directed parallel to the current local Z-axis of the 
element, (non-conservative load).

Deck p l a t i n g  e l e m e n t

USFOS-TM/ 1991-03-01
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12. 2

The element is elastic until Von mises yield criterion is fulfilled at one 
of the four nodes and will then become plastic.

Buckling is not accounted.

(usfos-doc)usfos-tm-12:text / 1990-07-01
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13. SHIP COLLISION
13.1 INTRODUCTION

The collision response of fixed offshore structures can be divided in the 
following deformation modes :

- Local deformation of the tube wall at the point of impact
- Beam deformation of the hit member
- Global deformation of the structure

Calculation of beam deformation and global deformation of the platform is 
included in the ordinary USFOS calculations.

13.2 LOCAL DENTING OF TUBE WALL

T h e  load-indentation curves recommended by DnV /32/is shown in Figure 13.1.
p

Figure 13.1. Load indentation, DnV

USFOS-TM/1991-03-01
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In USFOS, the curves were pararaetrisized, and the following foraulas were 
implemented:

p
■ C,^ref

^ref _ t2 rD 
4 ^t

Cl = 22 + 1.2

a 1.925

The resulting load indentation relationships are shown in Figure 13.1.

To account for the influence of axial force on the dent growth, the following 
correction was introduced.

__P_
^ref Cl ( Vvd ' - 0.5 < —  < 1.0 (13.2)N„

where N and Np are is the axial force and the axial capacity of the member, 
respectively. Effects of this correction is indicated in Figure 13.2.

Figure 13.2. Correction for membrane action

USFOS-TM/ 1991-03-01
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This gives the following expression for dent depth as a function of lateral 
impact load and axial member force.

6
D

i  / a

ref

3 /T i-fi-
(13.3)

13.3 IMPLEMENTATION IN THE PLASTICITY FORMULATION

The local indentation,and subsequent dent growth, cause a shrinkage of the yield 
surface. For members with plastic hinges, this shrinkage will cause the stress 
resultants to depart from the yield surface. However, this effect can be 
accounted for, by including in the consistency criterion Eq. (4.111) an addi­
tional term, which represents the change of the yield surface due to the 
temperature increment:

Af  = Af . . . + Af ar = ot = c o n s t a n t  Ao

The second term takes the form

A 6F 66 A„ 6F 66 -ZiFA c = 7T tt: An + 77 —  ApAo 80 6N 60 0P (13.4)

where P is the lateral component of the impact load, and N is the axial force in 
the member.

Comparing Eq. (13.4) to Eq. (4.103), it is seen that the first term can be con­
sidered as a contribution to the elasto-plastic incremental stiffness, and the 
second term as a contribution to the increment in consistent nodal forces.

USFOS-TM/1991-03-01
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13-4 SHIP INDENTATION CHARACTERISTICS

The strength and load-indentations characteristics of the ship are based on the 
curves given in /32/. Figure 13.4

Figure 13.4 Load indentations curves for ship impact
-Zf

The curves apply to broad side impact of a 5000 tonnes vessel. Post-collapse 
deformations of the ship are not included in the ship impact algorithm. That 
is, no energy absorbtion is calculated after the max ship impact force is 
reached.

usfos-tm-13:text



14 DYNAMIC COLLAPSE ANALYSIS

14.1 Dynamic equations of motion

The dynamic equilibrium equation may be written as

F'(f) + F d(f) + F r{t) - R{f) C14-1)

where

F ‘(t) - M?

F d(f) = C t

F r(t) = K r  

R

vector of inertia forces

vector of damping forces

vector of structural restoring forces (linear case) 

vector of external loads

14.2 Mass matrix

The mass matrix of the discretized system may be given either as a consistent mass or a lumped 
mass. The consistent mass matrix is given by the expression :

ne l

M  = f  a ]  J p, N TN d V a , (14-2)
/=1 V,

where p is the density and N  the element interpolation polynomial.

Using a third order polynomial shape function the consistent mass matrix takes the following form 
for a 4 DOF beam element:

140 0 0 70 0 0
0 156 -22/ 0 54 13/

TnJ 0 -22/ 4/2 0 -13/ -312

420 70 0 0 140 0 0
0 54 -13/ 0 156 22/
0 13/ -312 0 22/ 4/2

(14.3)

The lumped mass matrix reads:



(14.4)m = _  diag \ 210, 210, a/2, 210, 210, a I2 J 
420

Concentrated masses may be specified at nodes.

14.3 Damping

Based on distributed material damping property â  the well-known equivalent viscous damping 
model is given by:

F d = C  • t  (14.5)

where the damping matrix is given by:

C C, N TN dV  a, (14.6)

For computational reasons the damping matrix is commonly expressed in terms of the Caughey- 
series:

C-E aK M(A4-1K)'t (14.7)
k

where M  and K  are the mass and stiffness matrix respectively. This expansion reduces to the 
Rayleigh-damping form when the series is truncated after the two first terms. The weight-factors aK 
are calculated from modal damping data available for the structure.

14.4 The a-method of time integration

The so-called HHT-a method for time integration proposed by Hilber, Hughes and Taylor /34/ is 
adopted. This method employs some sort of time averaging of the damping, stiffness and load term 
expressed by the a-parameter. A  beneficial feature of the method is that it introduces artificial 
damping of higher frequency modes without degrading the accuracy .The governing equilibrium 
equation reads:

* (1 «*)»„., - « Ctn * (1 +a)KrM  - «Kr„ - (1 «)/?„., - aB„ (14.8)

C, ' t. * A W „  + A(yfM  (14.9)

The factors y and p are the free parameters in the Newmark-P method which , along with a,



1 4 . 3

m m

- <•. * Atf. + -2p)/-„ ♦ AIX., <14-10>

determine the stability and accuracy of the quadrature formula. In the original Newmark-P method 
(a=0) y is set equal to 0.5 to avoid artificial damping. Depending on the value of (3 different 
integration methods are retrieved, such as second central difference method ((3=0), linear acceleration 
((3=1/6) and constant average acceleration ((3=1/4). Only the integration with constant average 
acceleration is unconditionally stable, otherwise the method is conditionally stable. In the HHT-a 
method unconditional stability is obtained when the following conditions are satisfied:

1 n< a < 0
3

Y - 1  (1 - 2a)

f> - 1  (1 - a)2 4

Incremental equations are developed as follows:

M C i X )  - ( l + a J C ^ - g  + (1 +a)K(rn+1-fn) = (1+a)(/?n+1 - /?„)

+R n -  m n -  C tn - K rn
(14.11)

- Ci - C Ar„ /•„ - _  r
Af2(3 "+1 Afp ■" 2p '"

(14.12)

A f -  t n A -  1  t -  At
( „ "\

'n+1 'n+1 n n+1 "p " "

Combining equations (14.11-13) yields

V
-1-1 
2(3

(14.13)

1 Ar 1 * 1 >.-At ,  —Tn ■■■-fn
Af2p 0+1 Alp ” 2P "

M  + (1 +a) [^r"+1 iPn AfX-i r,
2pV p y -I

+(1+a) [Arn+1] K  = (1+a) (fln+1 - /?„) + a/?„ - Mf n - C tn - K r n

(14.14)

The only unknown is Arn+1. Collecting all unknown on left hand side yields

rJ_
A(P

(1 +a)K + (1+a)_?_ C  + _ L  M A r . -
V Afp Af2p J n+1
(1 +a)(A?n+1 -/?„) R „ - M tn -  C tn - K r n +

JL-i
2P

(14.15)



In the subsequent derivation proportional damping is assumed:

C = C0 + a^M  + a 2K (14.16)

Consequently, the governing equation can be written as

K* A rn+1 - A ICi (14.17)

where the effective stiffness becomes

K* = (1 +a)
f  \

a2y
1
v r jAlp

K  + (1+a) J L c o + 1_ + (1+a) 2̂-L
Afp u [_Af2p A<p

M (14.18)

or

K* - a^/C + acC  + aMM (14.19)

where the definition of aK, ac, aM is evident from equation (14.18). The effective load vector takes 
the form:

A/?n+1 = (1 +<x) Rn+1 ~ R n + l t n * Ad JL - I f, 
P " 2P 'y ->

7 1 * f 1 > ^
Alp "

- 1V2P ,
M + R n - C t n -  K r n

(14.20)

or

Afln+1 - (1+a] (/?n+1 - R n + CcCj + + R n - Cf. - Kr„ (14.21)

where again the definition of C c and CM is obvious from equation (14.20).

The total acceleration, velocity and displacement at step n+1 become:

= r n + A rn+1

^n+1 ”  ■gp A^n+i + ' l - l ' ^ - A f  ̂T
2p

(14.22)

(14.23)

n+1 1 Ar„., - _ L  t +
Af2p Alp n

'l-JL'
v 2Py

(14.24)



14.5 Equilibrium iteration

In general, unbalance will be introduced during each load increment To achieve equilibrium the 
following iterative scheme is introduced:

A#& II > + > ££ (14.25)

a C - a h \  + A';:, (14.26)

Al̂ n+1 = Ai^+1 + A ^ (14.27)

where A^, , AJ*̂  , A ^  denote increments in displacement, velocity and acceleration during 

iterative step number i+1.

From equations (14.12-13) the following relationships are obtained:

(14.28)

Af2|3 Ai+i (14.29)

The only unknown is the displacement increment, which is determined from:

K* &  = A l C  (14‘3°)

where K. is given by equation (14.18). The right hand side represents the unbalance between 
external loads and internal forces and is given by:

-  (1+a) fln+1

- ~ (1+a) Cfn+1 + a C tn - (1+a) K rn+, + a K rn

- (1+«) (*-1 - 1 - Kfjj - Mfn
- a (/?„ - C tn - K rn)

(14.31)
ji+1

As soon as equilibrium is achieved the load term vanishes. In practice, convergence is assessed on 
the basis of iterative displacement increments in the same way as for static analysis.



14.6 The predictor-corrector method

An alternative to the above procedure is to use the predictor-corrector approach. Then the equations
(14.9-10) are split into two parts:

-C * C  (14.32)

C, - t, + A((1-r) f„ (14.33)

C , - Af T f„., (I4-34)

r„„ * C  <1435>

C  - * Atf„ <- (1-2p) f„ (14.36)

C,- A(!P (I4-37)

The first part r%+1 and /£.* are called the predictors. They depend upon values at step

previous step and can be determined without solving of incremental equations. Thus, the 
displacements at step 11+1 is first estimated on the basis of the predictors (implicitly assuming the

acceleration equal to zero). Then, the corrector terms, 1̂ +1 and /£+1 , which only

depend upon the total acceleration at step n+1, fn+1 , are determined during equilibrium iterations 

as described above. The displacement, acceleration and velocity are updated as follows:

M  I a f+1
’ n + 1 ” ’ n + 1 +

C  -  ( r J S  - (14.38)



14.7 Time step scaling

An important concept in the static solution algorithm is scaling of the step length to avoid large 
overshooting of the yield surface during load incrementation.

It is considerably more complex to perform scaling in dynamic analysis. The natural parameter to 
scale is the time step At However it is seen from equations 12 and 14 that both the effective 
stiffness as well as the effective load are (nonlinear) functions of A l In addition the various 
components of the displacement increment vary non-proportionally during the time step.

A  better way to achieve some degree of scaling and thereby prevent large overshooting of yield 
surfaces is to use the predictor-corrector method, hr the predictor phase scaling of At is easily be 
performed by the same algorithm used in static analysis. As noted above this involves no solution 
of the dynamic equilibrium equations. Once the scaled time increment is determined, the new 
plastic hinge is introduced and the dynamic equilibrium equation is solved in the corrector phase 
keeping At constant The corrector displacements cause drift-off from the yield surface of existing 
hinges and new hinges may also form. However, repeated equilibrium iterations ensure that the force 
state in yield hinges return to the yield surface.



15 EXTERNAL HYDROSTATIC PRESSURE

15.1

15.1 Introduction

An option is included in USFOS to account for large hydrostatic pressures on the capacity of tubular 
beam elements. Such a load situation may occur for structural components such as bracing members 
of deep sea offshore platforms in which water is sealed off.

The external pressure excerted by water introduces compressive stresses in the circumferential 
direction. This action reduces both the cross sectional plastic capacities as well resistance to local 
wall buckling.

15.2 Tube section interaction curves

Figure 15.1 depicts a typical set of interaction curves with respect to axial force and bending 
moment for a tube section with D/t = 48, exposed to external pressure. It is observed that as the 
pressure increases, the size of the interaction function decreases. From numerical simulations /35/ it 
has been concluded that the interaction functions for different levels of external pressure have almost 
identical shapes.

Figure 15.1 Tube section interaction curves for various levels of external pressure Q
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15.2
m m

The plastic capacities with respect to axial force PPQ and bending moment M PQ, including the effect 
of external pressure, are given by /35/:

Npq = NP[1.0 - ApCQ/Q̂ )1-2]

m pq = Mp[1.0 -Am«yQB)]
(15.1)

where

Pp = A- cy and M P = W P- oy are the cross sectional plastic capacities without the effect of external 
pressure. The normalized pressure is given by Q/Qa where is the elastic collapse pressure:

_ 2 E{t/Dy 
(1-v)

A P and Am are geometry dependent modification factors for the axial and moment capacity, 
respectively, /35/:

A P = 0.18 + 1.09-105/(D/t)3'65 

A m = 0.15 + 4.30-107(D/t)3'51 

PPQ and Mpq are plotted in Figure 15.2 as a function of the relative pressure Q/QCT.

( 1 5 . 3 )

Figure 15.2 Plastic capacities as a function of relative pressure Q/Qa
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15.3

The interaction function for the tube section, when accounting for external pressure, is given by:

(1 - m?)'12- c o s ( l - - - £ _ _ )  - * ml)'12 - 0
2 (1

where
(15.4)

n N
N,TO M PX

m„
M y M zm  = z
M pQy M pqz

From Eq 15.4 it is observed that the effect from the external pressure on the plastic torsional 
capacity Mp* is neglected.

15.3 Implementation in the plasticity formulation

The effect of the external pressure on the plastic cross sectional behaviour is implemented in the 
two-surface model. The size of the bounding surface corresponding to full plastification of the cross 
section is reduced according to Eq 15.1. It is for conviniency also assumed that the size of the yield 
surface, corresponding to initial yielding, is given by Eq 15.1. Figure 15.3 shows the yield and 
bounding surface for a compressed member located at 300 m  water depth.

The effects of external pressure only enters the plasticity formulation which implies that the elastic 
behaviour of tubular components is unaffected. This is clearly illustrated in Figure 15.4 which shows 
the buckling load of two compressive members with slenderness of 60 and 120 respectively. For the 
column with slenderness equal to 120, it is seen that the peak compressive load is the same for zero 
and 300 m  water depth, respectively.

The external hydrostatic pressure is calculated by USFOS at both ends of the beam element as well 
as the midspan, i e at the positions where a yield hinge may occur. The external pressure is 
calculated on basis of the initial geometry of the structure neglecting the pressure changes caused by 
structural deformations.
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CROSS SECTION INTERACTION - Depth 300m

-1.1-0.9-0.7-0.5-0.3-0.10.1 0.3 0.5 0.7 0.9 1.1 
M / Mp

Figure 15.3 Plasticity model including effect of external pressure

Figure 15.4 Axial force is axial displacement for columns with different slenderness
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15.4 Limitations

It should be noticed that the accelerating effect of the hydrostatic pressure on the local dent growth 
is not realistically modelled. This implies that USFOS may predict the local dent growth 
unconservatively for the case when the tube section is exposed to external hydrostatic pressure.
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