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1 Introduction

The purpose of this model is to describe the revised strain calculation model
in USFOS. The strains obtained with the revised model are investigated for a
tew characteristic cases, including a case that has been analyzed with shell
modeling and alternative software (ABAQUS, USFOS).

Recommendations for parameters to be used for calculations of strains are
given.

2 Revised strain calculation model

The original strain calculation model is described in USFOS theory manual and
is recapped in Appendix. A weakness of the model is that it is based upon
total plastic displacements and rotations. An important parameter is the hinge
length, which depends on the moment distribution over the beam and the
axial force level. With the present version a change in the moment
distribution and the axial force has a direct impact on the strain, including the
previous levels. This may for example cause a spurious reduction or increase
of the strain during elastic unloading, in which case the strain should remain
constant.

In order to overcome this problem an incremental approach is adopted. The
total strains for two adjacent steps are calculated using the last updated
values of the bending moments and axial force for the member.

Thus the strain at step no. i is estimated by the following algorithm:

& =& + A¢

max,i max,i—1 max,i

_ tot i tot ,i—1
A‘c"max,i - CC"max(g ’Ml,iﬁMZ,i’]vi)_gmax(H ’M

l,i’MZ,i’Ni)

With this procedure a change of the “cantilever” length (refer excerpt from
theory manual in Appendix) will not have an intermediate impact on the
strain level.

Strain Assessment in USFOS 2012-01-01
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Furthermore, calculation of strains increments is not carried out if the total

0" is constant.

plastic rotation
The “cantilever” length concept is very useful, in the sense that it is
automatically adjusted when a mid hinge is introduced.

3 Strain predictions for various characteristic cases.

3.1 Beam with concentrated load at mid span

This example is highly relevant for ship collision problems. For simplicity
only one element is modeled, a tubular member with the following data:
— Diameter D =1m
— Thickness t = 60 mm
— LengthL=25m
— Yield stress fr =300 MPa
— Default hardening c = 0.002

The beam is modeled with clamped and axially fixed end so that ity will start
by developing a three hinge bending mechanism, where the bending action is
transformed in membrane action when the deformations become finite. The
default modeling is 2 members with a concentrated load representing a
collision load at mid span. To see the effect of element subdivision strains are
also estimated using 6 elements as shown in Figure 3.1. The example with 2
elements is identical to the one discussed in Chapter 7.8 in Nonlinear Analysis
of Offshore Structures by B. Skallerud and ]J. Amdahl (2002)

The load factor versus mid point displacement is shown in Figure 3.2.

The predicted maximum strain is plotted in the same diagram as Fig. 7.19 in
the book and is redrawn in Figure 3.3. It shows that the revised model agrees
very well with the old model, but avoids the spurious nonlinearity when
hinges (quarter length) are formed. USFOS predictions are in good
agreement with ABAQUS results and USFOS shell modeling. It is noteworthy
to see that ABAQUS results depend considerably on mesh size. This is a well-
known phenomenon in nonlinear finite element analysis.

Strain Assessment in USFOS 2012-01-01
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The rapid increase in strain for a displacement of 0.2 m is due to the yield
plateau assumed in the strain prediction model. It ceases when the strain

reaches the level for onset of hardening.

Figure 3.4 shows a comparisons of strains predicted with 2 elements and 6
elements. The strains agree very well. Some small irregularities are observed
for the 6-element model. They are due to small rotations caused by the large
number of hinges that are produced, actually up to 15 hinges. The strain
predictions demonstrate that use many small elements for the same geometry
does not increase the accuracy and should be avoided. Otherwise, the results

confirm that the procedure used to predict the hinge length works well.

Flastic Utilization
1

0.2

0

Global load

5 1 1.5
Global displacement

Figure 3.2 Global load versus lateral displacement for beam
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Figure 3.3 Maximum strain predictions in beam (Refer Skallerud & Amdahl:
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Figure 3.4 Maximum strain with 2 and 6 beam elements

3.2 Beam subjected to axial tension

This case is chosen because customers often perform test with the strain

model using a simple tensile member. It is probably used because material

Strain Assessment in USFOS
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tests are performed with tension coupon specimens. The outcome of the test
is engineering stress-strain relationships. It is emphasized that the example is
“hypothetic” in the sense that a platform member never will experience pure
tension, but will always be subjected to rotation which will contribute to
localization of the strain.

The finite element model using 6 elements is shown in Figure 3.5. The load
factor versus elongation is displayed in Figure 3.6. The response is initially
elastic, followed by elasto-plastic transition to the strain hardening region.

The geometry and material data are the same as for the previous example.

Figure 3.7 shows the strains versus elongation using 1, 2, 3 and 6 element
subdivisions, respectively. The strains agree very well regardless of the
number of elements and confirm that the model works well for pure tension.
The strain remains a smooth function also when mid hinges for the two
elements are introduced at beam quarter lengths.

The average strain, obtained by smearing the elongation uniformly over the
member, is also plotted. It is observed that a peak strain of 0.10 corresponds
to an average strain of 0.03 and a peak strain of 0.15 to average strain of 0.05.
It is noticed that an average strain of 0.03 corresponds to onset of hardening

for the assumptions used (yield plateau 20 x yield strain), so using a peak
strain in the range of 0.10 to 0.15 is not unreasonable.

Flastic Utilization

S Y o Y o L S [ e L S,

Figure 3.5 Tension member modeled with six elements
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Figure 3.7 Strain versus elongation for various number of elements.

3.3 Brace tension member

This example is chosen because it simulates a behavior of an X-braced jacket.
During progressive collapse tension braces will undergo significant
elongation (in addition to some rotation). X-braced jackets are very
redundant, as long as fracture is not initiated in the tension brace. Hence, it is
essential to control that the strains do not become unacceptably large in the

tension

braces.
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The model is the so-called Zayas frame (which can be found in
USFOS/Examples folder).

The finite element model is shown in Figure 3.8. The behavior of tension
brace- Element 1 — is focused. The member is modeled with 1, 2,4, 6 and 8
sub-elements, respectively. Figure 3.8 shows the 6-element model (the
REFINE option has been used to generate the model).

The global load versus lateral displacement is shown in Figure 3.9 and is
virtually independent of element 1 subdivision.

The strain versus lateral displacement for all sub-elements for the various
subdivisions is plotted in Figure 3.10 through Figure 3.14. The strain
predictions are in the same range, but some variations are observed. This is
due to the fact that the local rotations tend to play a larger role when the
number of elements increases. Significant subdivision of the uniform member
tends to destabilize the calculations.

Based on a fair judgment of strains — it may be argued that the critical strain
0.15 is reached for a global displacement of 0.6 m with 1 element, 0.9 m for 2
elements, 0.8 m for 4 elements, 0.7 m for 6 elements and 0.6 m for 8 elements.

Inevitably some deviations exist; a fair estimate is probably to use 0.6 m as
tailure criterion.

Strain Assessment in USFOS 2012-01-01
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Figure 3.8 Frame model — tension diagonal 1, modeled with six elements:
Element no’s 1, 102,103....106.
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Figure 3.9 Global load versus lateral displacement for frame
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Strain with 1 element
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Figure 3.10 Strain in tension diagonal with 1 element
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Figure 3.11 Strain in tension diagonal with 2 elements
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Figure 3.12 Strain in tension diagonal with 4 elements
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Figure 3.13 Strain in tension diagonal with 6 elements
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Figure 3.14 Strain in tension diagonal with 8 elements

3.4 Cyclic behavior

This section studies the behavior of the strain calculation module during
cyclic loading. The structural model is the beam model from Section3.1. In the
tirst case (1) the beam is unloaded to zero after reaching load factor 8.0. This
simulates a collision case where the collision load is unloaded after the

maximum energy is reached.

Strain Assessment in USFOS 2012-01-01
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The second case (2) is more extreme, in the sense that the lateral load is
reversed before returning to the original direction. Further, the strain for a
uniform load is compared with that of a concentrated load.

3.4.1 Elastic unloading and reloading

The global load versus — global displacements for the two cases are shown
Figure 3.15 and the corresponding strains in Figure 3.16. When unloading is
performed at a global displacement of 1.0 the strain level remains constant, as
it should. In case 1 the strain increases again when the displacement exceeds
1.0.

In case 2 the strain decreases as the load is reversed and becomes virtually
zero. Upon reloading the strain follows the same track as case 1. In both cases
the strains follows the path for monotonous load. The conclusion is that the
strain procedure works excellently for cyclic loading.

| AR EREEEE SRR SRR EEEEE

Global load
Global load

0.5 1
Global displacement

5 1 1.5
Global displacement
Case 1 Case 2

Figure 3.15 Global load versus global displacement for elastic unloading to
zero (Case 1) and cyclic loading (Case 2)
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cyclic vs monotonous
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Figure 3.16 Strain versus global displacment

3.4.2 Distributed load versus concentrated load

The intensity of the uniform load is equal to [/[1=2[1[1/[][], so that the load
factor at collapse is approximate the same as for the case with concentrated
load. The strain history for case 1 is compared with that for concentrated load
in Figure 3.17 and for case 2 in Figure 3.18. The strain histories show much of
the same features when the load is distributed, but it increases more rapidly
for large deformations. The slope increases in the first cycle takes place when
mid hinges are introduced in each of the two elements (quarter length). This
causes a smaller “cantilever” length. In addition the plastic rotations at the
supports are larger for distributed load.

The strain of interest is the maximum tensile strain. For case 2 the point of
maximum strain shifts form one side of the beam to the other. The explains
the somewhat “odd” shape of the curves for negative global displacement in
the case of distributed load.

Strain Assessment in USFOS 2012-01-01

14



15

i IUSFOS
Reality Engineering
cyclic vs monotonous
020 I I
—cyclic-concentrated 1
—cyclic -distributed 1
0.15
/
=
g£0.10
’ /
0.05 /
0.00
0.00 0.50 1.00 1.50 2.00

Global displacement (m)

Figure 3.17 Strain versus global displacement case 1
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Figure 3.18 Strain versus global displacement case 2

3.5 Effect of local denting

The present example is concerned with the effect of local denting on strain
predictions. This is particularly relevant for ship collision problems. ship
collision problems. The example is similar to that of Section 3.1. The impacted
member is tubular with the following data:

— Diameter D =1m

— Thickness t =25 mm

Strain Assessment in USFOS 2012-01-01
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— LengthL=16m

— Yield stress fr =300 MPa

— Default hardening c = 0.002

— Axial springs in end 2 with stiffness 100 MN/m.

The beam is rotationally clamped so that it will start by developing a three
hinge bending mechanism, where the bending action is transformed in
membrane action when the deformations become finite. The axial springs
delay the building up of axial force compared to fixed ends, and represents
real conditions better.

The collision is run twice; 1% using the BIMPACT input option and local
denting is included, 2 applying a concentrated force at mid span, and local
denting is not included.

The collision case corresponds to a kinetic energy of 10 MJ.
The results are shown in Figure 3.19through Figure 3.21.

The global load versus global displacement in Figure 3.20 shows how the
local dent in the middle of the beam reduces the capacity of the beam,
especially in the bending regime.

The bending moment in the middle of the beam with local denting is
significantly smaller than that without denting, refer Figure 3.20. The
difference increases with increasing deformations because the dent depth
increases. However, the bending moment is also reduced by the increase of
the axial force.

The strain histories versus global displacement with or without dent are
plotted in Figure 3.21 along with the dent depth. The maximum strain occurs
at beam ends when local denting is included at mid span, but are
approximately equal at beam ends and mid span when denting is not
included.

The strain at mid span is relatively small, because the reduced effective
diameter reduces the bending induced strains. The local denting does
however, also affect the strain at beam ends; because of the reduced bending
moment at mid section, the effective cantilever length for the end hinge
increases, and hence, the strains become smaller.

Strain Assessment in USFOS 2012-01-01
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Figure 3.19 Global load versus global displacement
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4 Determination of strain model parameters.

Two important effects influence the assessment of strains in the plastic hinges:
1. The plastic rotations and plastic axial displacements calculated in
Usfos. These do in turn depend on the hardening values used in the

Usfos material model (refer c-factor in MISOIEP, MONPLAS etc)

2. The strain hardening parameters in the strain calculations routine

In the present version of Usfos the strain hardening parameters in the

response analysis and the strain calculation model are not directly related.

The default strain hardening model in USFOS is uses a hardening coefficient
cnh = 0.002. This factor is applied on all stress resultants (Note that in principle
the strain hardening value for bending should not be exactly equal to the

strain hardening in axial tension/compression. This effect is of little

importance and is disregarded). The default value is conservative, and gives

slightly too large plastic rotations and displacements.

According to Norsok N-004 the hardening values and critical strains for the
three steel grades in Table A.3-4 may be used. It is observed that most values

differ from the default values in Usfos.

Table A.3-4 Proposed values for e, and H for different steel grades

Steel grade | ¢, H

S 235 20% | 0.0022
S 355 15% | 0.0034
S 460 10 % | 0.0034

The present strain calculation model in Usfos has been based on the following

default values:

o, =130,

ult

e, =20¢, ¢ =%

&, =0.15
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On the basis of these default values stress strain curves for various grades are
shown in Figure 4.1. The stress strain curves for strain calculation are defined
up to a strain value of 0.15 regardless of the grade. Of course, a lower value
may be chosen for the critical strain, but the full benefit of hardening is not
appreciated. The present default values give a good stress-strain curve for
grade S 355.

For grade 5235 the hardening is “too fast” and for S460 “too slow”. The yield
lateau is also exaggerated for S 460

Usfos'strain'vs.[NorsokN-004(
U
600!
500
e 5355
L 4000+ S460
£ - o =
% > @ e  S5355-Srain
- 300! ] )
E | S460-Srain
i
200 S235
==  S5235-8rain
100
0 r r r r !
0 0.05! 0.1 0.15 0.2 0.25
Strain

Figure 4.1 Stress strain relationships for original model (default values)

An alternative input model has been developed for grades between S 235 and
S 460. In these cases the hardening parameters are assumed to follow those
given in Norsok N-004 Table A.3-4. This gives:

For grade S 235

o, =1390, =327 MPa
£ =208, & =2L=0.0011
| E

£, =020

gref = gu - gs

Strain Assessment in USFOS 2012-01-01
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For grade S 355

o, =1300, =461 MPa
e =10g, & =2L=0.0017
| E

g, =0.15

gref = gu - gs

For grade S 460
o, =1.150, = 530 MPa

£.=5¢ &= % =0.0022

g,=0.10

gre@/' = gu - gs

The stress strain relationships for the strain calculations are illustrated in
Figure 4.2. The flow stress coincides at the ultimate stress given in NORSOK.
The parabolic stress-strain curve and the linear hardening curves deviate
noticeably for intermediate strain values. However, this is of secondary
influence; the most important parameter is by far the ultimate stress and this
is attained for the critical stress.

Automatic calculation of NORSOK strain hardening parameters for strain
calculations are offered in Usfos v8.6 for grades between S 235 and S 460. For
intermediate values of the grades, linear interpolation is used. Refer Usfos
release Notes v8.6 for details of input

For grades >S 460 no automatic calculation is offered. Appropriate value for
the hardening parameter cn remains the responsibility of the user.

Instead of using the default values or the automatic calculation for grades
between 5235 and 5460, the user may specify all parameters for the strain-
hardening model by means of the option “UserDef ”. Refer Usfos release
Notes v8.6 for details of input

If desired smaller values than those given in the NORSOK code may be used.
This is conservative. The Usfos strain model is calibrated to give a good
prediction for the acceptable strain levels given in NORSOK (i.e. strains in the
range of 10%- 20%).

Strain Assessment in USFOS 2012-01-01
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Figure 4.2 Stress strain relationships for revised model (key: 5235,5355, 5460)
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USFOS Theory Manual 10. 1

Fracture Criteria

10 FRACTURE CRITERIA
10.1 INTRODUCTION

Progressive collapse analysis by means of USFOS assumes implicitely perfectly
ductile behaviour, i.e. rupture does not take place at any location. 1In
practice the material endurance is limited, rupture may take place due to
excessive straining possibly accelerated by local cracks. Hence, the capacity

as predicted by USFOS may be overestimated.

An inherent problem with the plastic hinge concept used in USFOS is that no
information is provided as to the strain level in the hinges. In fact, all
strains are concentrated at one point of zero length, which means that the

strains go towards infinity.

In order to develop a fracture criterion it is necessary to obtain a strain
estimate. The purpose of the present study is to develop a simplified model,
where the total strain is related to the plastic deformations in the yield
hinge. The nominal strain is then compared with a critical strain derived from
fracture mechanics principles (Level 3 method). If the critical strain is
exceeded the member in question including its load effects should be removed in

the subsequent analysis.

USFO0S-TM/1991-03-01



USFOS Theory Manual 10. 2

Fracture Criteria

10.2 ROTATION IN ELASTO-PLASTIC REGION

10.2.1 Rectangular cross-section

M4

Mp

My

|
|

_ | > x h
|
4/.///},//,‘ # -

Figure 10.1 Cantilever beam

Consider the cantilever beam in Figure 10.1. The cross-section is elastic when
M < My. OnceM = M, yielding starts in the utmost fiber. For increasing
bending moment the plastic zone spreads twoards the neutral axis. At the end

the whole cross-section is plastified and the bending moment attains the plastic

bending moment.

P

Figure 10.2 Strain distribution
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Fracture Criteria

The distribution of strain in the elasto-plastic section is sketched in Figure
10.2. When €; 2 €y, the stress 0 = 0y according to the assumption of linear

elastic-ideal plastic behaviour. The corresponding moment is

h
2 4 [Y0)2 1 [Ey)z2
M= 2 g o, dy = Mpl1 - 3 [— =M1t -3 e (10.1)

the plastic bending moment for rectangular cross-section.

The axial variation of the bending moment is expressed as

X
M=M (1 - I) (10.2)
From Eq (10.1) and Eq (10.2) there is obtained
€9 1
= = (10.3)

y J3%

The rotation in the elasto-plastic zone from the onset of yielding to an

arbitrary point, Al, from the end is given by

1/3 2¢g, 26, 1/3 4le, €y
=] —max=-— ] dx = [1 - ] (10.4)
M B h R % 3h €max

where €,,, denotes €5 at Al.

This shows that the rotation in elasto-plastic zone for an ideal plastic
material is bounded and approaches asymptotically the value
4le

y
Ocp = 3h

(10.5)
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USFOS Theory Manual 10. 4

Fracture Criteria

Conversely, the maximum strain can be estimated from the total rotation

emax 1
e, = 1 3h_ 5 (10.6)
4l€y

10.2.2 Tubular cross-section

Figure 10.3 Stress distribution in tubular cross-section
Figure 10.3 shows the elasto-plastic stress-distribution in case of circular
cross-section. The distance to the first yielding fiber is now described by the

angle 8.

The corresponding bending moment is given by

8o
M = Mp{smeﬂ + coseo]/z (10.7)

In the same manner as for rectangular cross-section the axial wvariation of the

yield zone is determined by

8o

sinB,

+ cosf

X X I
> =1_l < {1 - =} (10.8)
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The total rotation can again be found by integrating the curvature in the

elasto-plastic region

il
(1-7)1
0= ] —ax (10.9)

A closed-form solution is difficult to obtain. Approximately, there is obtained

g . i 10.10
© 2.3r " €pax (10.10)
and
emax
1
— - 553 (10.11)
v
€y
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10.3 ROTATION IN STRAIN HARDENING REGION

For large rotations strain hardening will occur. In the following the model

shown in Figure 10.4 is used

l
|
i
|
]
[

i i
$ Eﬂ*.’es fE
Figure 10.4 Strain hardening model

The yield strain is assumed constant in the range €, < € < €,. For strains

y
exceeding €; strain hardening takes place with a maximum value, Aoy, for
€ = €rer + €5 where €,.¢ signifies a reference strain. The hardening follows a

parabolic relation given by

€-€g €-Eg4
Ao = Aoy[ ][2 - ] (10.12)

10.3.1 Bending

For a tubular cross-section the strain hardening contributes to the bending

moment as illustrated in Figure 10.5.
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~

strain hardening

Figure 10.5 Strain/stress distribution for a tubular cross-section
The strain at an arbitrary fibre is given by

€ = €4sinf {10.13)
where €5 is the maximum strain of the cross-section.

The additional moment due to strain hardening is now given by

L
2
0M = 4rltho, [ = }sin@de (10.14)

ref eref

€gsinB-¢ €gsinB-¢g
.________2__________
8S
¢sin —
arcsin ¢

0

24 [ €s ] €0 T €s €s { €s ]1/2
=4r<tAg 1 + > - arcsin — - — 1 - (—)
J €reflErer 2 €9 €9

M-

This can also be written

[SRTN)

£(€yg)

max) f(€

OM = 4r?tQoy f(gy) = 4r2tAo f(e
J max)

(10.15)
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It is interesting to see that the maximum attainable moment is

- 4y2 LA O 2
M = 4r tﬂoy{2 3} = 3.62r tAOy (10.16)

when €,/€5 = 0, €3/€..¢ = 1. The constant 3.62 is, as expected, higher than
3.14, corresponding to a linear stress distribution, but smaller than 4,

corresponding to a uniform stress distribution over the cross-section.

For a cantilever, the bending moment varies linearly. Introducing a local
coordinate system x at the point of strain hardening initiation, f(€g) must obey

the relationship

f(€gg) X
— e 10.17
f(emax) lh ( )

where 1, denotes the length of the strain hardening region.

The total rotation in the strain hardening region is

1
B = J
0

[

€g h

ax = [ % £-1 [f(emax)f—]dx (10.18)
O n

r

It is very difficult to find closed form solutions to Equation (10.21) and

approximate methods will be resorted to.

Rearranging, Equation (10.21) becomes

1 1
pereflh h 80—85 h Ss
1 dx
9h B —— f = | + — dx (10.19)
r 0 P Eref lh 0 T
where the parameter p is given by
€nax~€s
p = — (10.20)
Eref
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€nax is the maximum strain occurring at the beam end. Figure 10.6 displays how

the nondimensional strain is distributed over the strain hardening region.

€o-€g

)
eref
E:max‘ss 1.0
—)

( Eref

0.6

0.4

0.2 0.4 0.6 0.8 1.0  x/ly

Figure 10.6 Strain distribution over hardening region

Relatively speaking, the strain intensity distribution is larger for moderate

strain levels as compared with high strain levels.

A reasonable approximation to the integral in Equation (10.22) is offered by the

expression

= a2 (10.21)
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The length of the strain hardening region is found from

Aoy

f(smax)"oy

1, Qm/m,

T 7 e, T Ao,
1 + £(¢& )y
max D-y

(10.22)

The relationship between f£(€,,,) and p is shown in Figure 10.7.

‘ £( Emax ) yd
1.0 + /

>

Figure 10.7 £f(€,,4) versus the parameter p

The following approximation is introduced

1.4p
£(Enax) ¥ T.0.5p (10.23)

The rotation in the elastoplastic region is given by Equation (10.8)

€,1
2.3r

eep ® (10.24)

and

- - 0.215 = (10.25)
1.4p Oy

1+0.5p Oy
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Combining Equations (10.22, 10.24, 10.26, 10.27, 10.28) there is obtained

Eref'l AOy
8 -6, +6, = ! 1.2p . 1.4p (10.27)
P r AOy 1.4 2+p 0, 1+0.5p
1 4 — —=2P
g, 1+0.5p
e A W S AR
€rer Oy 140.5p ~ E..¢ €5 2.3
Rearranging, there is obtained a second degree equation in p
ap? + bp + c = 0 (10.27)
where
Ao, Ag, € Or Ag,
a=1.68 —+ |1.4 + 0.215 - =——10.5+1.4 — (10.28a)
0y y 8ref E:r*efl 0y
b [2 8 AUy 0.86 Cy] s er [2 2 BAUy} (10.28b)
= .8 — + 0. - - + 2.8— .
Oy €s) Erer €rer 1 Oy
€
y
c =0.86 P.c; S (10.28¢c)
Eref €refl
Once p is solved the maximum strain is obtained from
eS
€nax = 8ref[P * e ] (10.29)
ref

10.3.2 Membrane Strain

The yield criterion formulated in terms of stress resultants takes the following

form for a tubular cross-section

f(m, n) = 0 (10.30)
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where m = M/Mp, n=T/2 N/N, are nondimensional bending moment and axial force,
respectively. The plastic increments in rotation and axial displacement are

governed by the normality criterion, i.e.:

9f dm

dep = dA e 3N (10.31a)
3f dn
de = dA 25 3N (10.31b)

where d\ is the plastic increment scalar. Combining, this yields

_ 3f/3m  Bam/a3M
dep = 3t/om  an/aN du,, (10.32)

and

a9, = (10.33)

P : du
sinn

R |-

This shows that the plastic axial displacement divided by the radius can be
interpreted as an equivalent rotation. This corresponds to distributing the
axial displacement over the effective hinge length. Hence, the total rotation

to be used in Equation (10.3ta-c) is

Yp
ptot - 9 . — (10.34)
P r

The presence of axial force increases the effective hinge length as illustrated

in Figuré 10.8.
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~N yield surface with

hardening

N = constant

M/M
/ P

Figure 10.8 Axial force - bending moment interaction

The relative length of the plastic and elastoplastic zone is

1, M
P y
r =0 - (10.35)

%_+ 1 -0 (10.36)

and the fully plastic surface

M
1 i N
TT:EETEF - Co8 3 TT:EETEZ =0 (10.37)

where Cy and Cy account for the hardening in the bending - and axial direction

respectively. This gives

T N
iU
e 1 : i 10.38
1 i (1+C )4c:os—r-r —N (38
M 2 (1+Cy)N,

1l represent the length from member end to the inflection point and is obtained

from the formula

= —_— L1 (10.39)
lmem MZ
1 + —
My
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where l,., is the total element length and M, denotes the bending moment at the

opposite end.

Combining Equations (10.41 and 10.42) there comes out

n
10 - )

1
1

ep 1
= W, -
1 + ﬁ?

(10.40)

| t?lz

mem (1+Cy)cosz

8

N
(1+Cy)N,,

The augmentation of effective yield hinge length caused by the membrane force

can then be obtained from

£ lep/lmem

- lep/lpem(N = M, = 0)
i N
790 -3

p
- 1M . L P (10.41)
2 m/4 m N
1 * MI - 1+CM (1 * CM)cos 2 (1+CN)ND

The bending parameter is taken as

Aoy
Cy = fle ) G;— (10.45)

For simplicity Cy is chosen equal to C.
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