
' '

cos ( B
2

N
NU

) & (
Mipb

Mipb,U

)
2

% (
Mopb

Mopb,U

)
2

, API

/000 /000
N

NU

%
Mipb

Mipb,U

2

% /000 /000
Mopb

Mopb,U

& 1 , HSE

( N
NU

)
"1

% (
Mx

Mx,U

)
"2

% (
Mipb

Mipb,U

)
"3

% (
Mopb

Mopb,U

)
"4 "5

& 1 , User defined

16.1

(16.1)

16 TUBULAR JOINTPLASTICITY FORMULATION
This Section presents the theoretical basis of a plasticity model derived for joint modelling.  Results
from preliminary studies with a similar (simpler) formulation are shown in Section 2.4.  Although the
mathematics may seem quite involved, the main message is that it has been possible to derive a
theoretically consistent plasticity formulation for the problem at hand, and that the formulation seems to
work.  It is also worth pointing out that a similar mathematical complexity is required for modelling
material yielding/hardening behaviour in nearly all general purpose FE programs. 

Details can be then left to the mathematically inclined...

16.1 General
Material nonlinearities are modelled by yield hinges introduced in the joint elements.  The behaviour of
the hinges is governed by plastic flow theory, according to an isotropic or a kinematic hardening model. 
Associated flow is assumed, with plastic potentials defined by interaction formulas for  the element
cross-section.  The model is formulated in force-space, i.e. it relates plastic displacements and rotations
to section forces and moments.  

The novel aspects in the proposed approach is that:

i. the hardening behaviour for each force component is directly determined by an input P-* curve.

ii. each force component follows an independent hardening rule (given by the independent P, Mipb

and M  curves), resulting in a countinously changing shape of the yield surface.opb

16.2 Plastic interaction function
The plastic interaction function may be given by (3.1).  Here, the capacity equations of the API and
HSE codes are given together with a general, user-defined plastic potential defined in USFOS.  For the
user-defined capacity formulation, the shape of the plastic potential is given by the "()-parameters.  
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16.3 Elastic-Perfectly Plastic Model
The yield condition is represented by an interaction function between axial force, in-plane bending and
out-of-plane bending. 

N, M , M  etc. are the joint forces and N , M , M  are the joint capacities for each forceipb opb U ipb,U opb,U

component.  ' = 0 represents full plastification of the cross section.  ' = -1 is the initial value of a
stress-free cross section.  In principle, a state of forces characterized by ' > 0 is illegal.  

The flow rule for associated flow is given by

stating that plastic displacement increments are normal to the cross sectional yield surface, ', multiplied
by a scalar, )8.  The surface normal is given by

and index i refers to beam end 1 and beam end 2.

The consistency rule is defined such that the state of forces move from one legal plastic state to another
plastic state, following the yield surface so that ' = 0.  For an elastic - perfectly plastic material model,
this can be expressed as

When both nodes are considered, (3.5) takes the form 

Elasto-plastic Stiffness Matrix

The elastic stiffness expression for the joint element is expressed as

The total displacement increment is separated into elastic and plastic components

and the stiffness equation is expressed as

when the flow rule (3.3) is introduced.  
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Pre-multiplying with G , the right-hand side takes the form of the consistency rule (3.5)T

and the plastic increment can be solved

Substituting )8 back into (3.8), the elasto-plastic stiffness of the element becomes

16.4 Strain Hardening Model
At each state of plastic deformation at the hinge, there exists a unique capacity surface in force space
given by

where N , M , M  are “elastic” joint capacities and R  are hardening functions, expressed as a0 ipb,0 opb,0 k

function of the plastic deformations for each force degree of freedom.  

In the context of joint modelling, the hardening function R(v ) can be directly derived from theP

nonlinear P-* and M-2 curves.  The “linear” part of the curves is extracted as v ; the remaining part ofE

the curve is included as “hardening”, where the degree of hardening is directly given by the plastic
deformation v  associated with each degree of freedom.P
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The consistency rule now takes the form

When both nodes in the element are considered, (3.14) takes the form 

The stiffness equation is again expressed by (3.8):

Pre-multiplying with G  and combining with (3.14), the right-hand side now takes the form T

The plastic increment can now be solved as

Substituting )8 the elasto-plastic stiffness of the element now becomes 
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Hardening functions R(v )P

In the context of joint modelling, the hardening function R(v ) and k  can be directly derived from theP h

nonlinear P-* and M-2 curves (3.19), where N  and M  are the maximum joint capacities under axialU U

force and bending, respectively.  

The plasticity formulation requires that the joint element is assigned an elastic stiffness, a limit to the
elastic range, and a plastic stiffness or hardening function.  Thus, the plastic interaction function is
given by 

where N  and M  denotes the limits of the elastic range and R  are the hardening functions.  Comparing0 0 k

(3.19) and (3.20), the hardening functions are given by

The elasto-plastic stiffness for the individual degrees of freedom are then given by

where k  is the elastic stiffness and k  is the hardening stiffness.  The resulting stiffness k should bee h

equal to the derivatives of the P-* and M-2 curves (3.23). 

With the elastic stiffness taken as the secant stiffness from the origin to the limit of the “elastic” region,
the hardening stiffness can then be directly calculated from (3.22).
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Gradients to the yield surface

The change in yield function due to a change in external forces is given by

The change in yield function due to changes in surface shape and extension of the yield surface is given
by

Index i refers to beam end 1 and beam end 2.

Using the general, user defined, interaction function from (3.1), the instantaneous yield surface
(including hardening) is given by

The derivatives are
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Integration of constituitive equations

The global load increment determines the total deformations for each element in the structure.  To speed
up the analysis procedure, a simple cutting plane algorithm is introduced to integrate the constituitive
equations, i.e. to determine the distribution between elastic and plastic displacement for each member
(Ortiz and Simo, 1986).  

An initial trial step is executed for each member, assuming that the element remains elastic for the full
increment in displacements

Subscript n refers to the previous, converged load step and subscript n+1 refers to the current step.

The resulting internal forces are then checked against the current yield condition to see if the
assumption holds.  If the yield condition is violated, i.e. , some of the element
deformations will have to be taken as plastic deformations.  The plastic deformations are determined by
an iterative procedure, repeated until 

a. the state of forces satisfy the yield criterion 

b. the plastic deformations satisfy the hardening rule

c. the elastic and plastic deformations equals the total incremental deformations 

This is expressed by the following steps:

1. The plastic increment is calculated from the consistency condition.  The consistency condition
during local force iterations is formulated as

where prefix d() denotes iterative changes in S, R and )8.  External, total deformations remains
fixed during these iterations.  Thus,  and 
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The consistency condition can now be re-written as 

and d)8 can be solved as

2. The accumulated plastic increment is calculated

3. Accumulated plastic deformations are calculated 

4. Internal forces are calculated as the accumulated forces up to the last increment, minus the
relaxation in forces due to plasticity

5. The hardening corresponding to the plastic deformations are calculated as

6. The internal forces are checked against to see if the current yield condition is satisfied

Repeat from step 1 until the yield condition is satisfied.
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