2.5 UFO INPUT RECORDS

UFO is special designed for being an efficient User friendly structural file **FO**rmat in connection with modelling of framed structures.

The user may give all input on one file, or distribute the data on several files. All control parameters are specified in the Analysis Control File. Structure data can also be read from this file, but is usually given on one separate file. The specific content of these files is not important, as long as all data are present.

UFO do not use any **internal** numbers, all data are referred to **user defined external** numbers.

These files may be written with a text editor, or generated by preprocessors

Analysis identification		Page
Amary 515 racinculation	HEAD	2-67
Nodal Data		2-67
Definitions: Node definition	NODE	
Options: Node Loads Node Mass Local Coord at Nodes	NODELOAD NODEMASS NODTRANS	

Element Data

2-70

Definitions:

2 Node Beam	BEAM
1 Node Spring to Ground	SPRNG2GR
4 Node Membrane Element	MEMBRANE
4 Node Shell Element	QUADSHEL
3 Node Shell Element	TRISHELL
8 Node Solid Element	SOLID8

Options:

Distributed Load	BEAMLOAD
Normal Pressure	PRESSURE
Distributed Shell Load	SHELLOAD
Sub Dividing Beam elements	REFINE
Unit Vector	UNITVEC
Eccentricity	ECCENT
Added Mass of Beam elements	ADDMBEAM
Initial out of straightness	BANANA

2-82

Cross Section Data

PIPE Pipe Box (RHS) BOXI/H Profile **IHPROFIL** Plate Thickness PLTHICK L-Section **LSECTION** General Beam **GENBEAM** Channel Section **CHANNEL** Rectangular Bar (Massive) **RECTBAR** Un-symmetrical I-profile **USYMMI**

Material Data

Diagonal Linear Spring (6x6)SPRIDIAGFull Linear Spring (6x6)SPRIFULLHyper elastic P-δ curveHYPELASTElasto-Plastic P-δ curveELPLCURVElastic IsotropicELASTIC

Misc Data

Gravity Load GRAVITY

2-86

2-90

The input records is presented in a standard frame with the following format:

RECORD IDENTIFICAT	Parameter Parameter FOR No. 1 No. 2 No. 3	
Parameter	Description	
1	Description of contents and default values	
2	Description of contents and default values	
3	Description of contents and default values	
Optional box for comments, notes, exceptions etc.		

NOTE! Parameters written in **bold** set are mandatory.

Parameters in regular set are optional, and default values will be used if omitted.

2.5.1 Analysis identification

Character 9 to 80 from each line are stored as text strings.

This record is given only once.

2.5.2 Nodal Data

NODE	Node ID x	у	z	ix iy iz irx iry irz
Parameter	Description			
Node ID	User defined (exter	nal) node n	umber	
x,y,z	X, Y and Z coordinate of the node			
ix	Boundary condition node:	code for X	-direction	of the actual coordinate system used at the
	0: Free, 1: Fix	ced		
iy, iz, irx, iry, irz	Similar boundary co			e remaining 2 translation degrees of freedom
				l may be omitted. This implies that by omitting de is free in all 6 degrees of freedom.

With this record, the user defines a nodal point to be used in the finite element analysis.

Example 1:

NODE 10200 1.0 0.0 4.0 0 0 0 0 0 0 NODE 10200 1.0 0.0 4.0

define both a node with ID = 10200, Coordinates (1.0, 0.0, 4.0) with all degrees of freedom free.

Example 2:

NODE 10300 1.30 0.0 133.0 1 1 0 0 0 0 NODE 10300 1.30 0.0 133.0 1 1

define both a node with ID = 10300, Coordinates (1.3, 0.0, 133.0) with x- and y- degrees of freedom fixed, the rest are free.

NODELOAD	Load Case Node ID fx fy fz mx my mz		
Parameter	Description		
Load Case	Load Case Number		
Node ID	User defined (external) node number		
fx,fy,fz	Concentrated force in X-, Y- and Z-direction.		
mx,my,mz	Concentrated bending moment about X-, Y- and Z-axis.		
	NOTE! Zeros at the end of the record may be omitted and will be treated as zero load.		

With this record, the user defines a concentrated load.

Example 1:

NODELOAD 3 10200 1000.0

NODELOAD 3 10200 1000.0 0.0 0.0 0.0 0.0 0.0

define both a force in X-direction acting at node 10200 with load case number 3.

Example 2:

NODELOAD 4 10500 0.0 0.0 1000.0

NODELOAD 4 10500 0.0 0.0 1000.0 0.0 0.0 0.0

define both a force in Z-direction acting at node 10500 with load case number 4.

NODEMASS	Node ID M_x M_y M_z M_Rx M_Ry M_Rz		
Parameter	Description		
Node ID	User defined (external) node number		
fx,fy,fz	Concentrated Mass in X-, Y- and Z-direction.		
mx,my,mz	x,my,mz Concentrated Rotation Mass about X-, Y- and Z-axis.		
NOTE! Zeros at the end of the record may be omitted and will be treated as zero mass with following exception: If only M_x is specified, M_y and M_z are assigned the same value.			

With this record, the user defines a concentrated mass.

Example 1:

NODEMASS 10200 1000.0

defines a mass in X-, Y and Z-direction at node 10200.

Example 2:

NODEMASS 10500 0.0 0.0 1000.0

NODEMASS 10500 0.0 0.0 1000.0 0.0 0.0 0.0

define both a mass in Z-direction at node 10500.

This record may be repeated.

NODTRANS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Parameter	Description		
Trans ID	User defined (external) node transformation number		
T ₁₁ - T ₃₃	The 9 terms in the 3x3 Transformation matrix T .		

With this record, the user defines a rotation transformation matrix to be used to define skew boundary conditions at nodes or defining local coordinate system for the 1 node spring to ground.

2.5.3 Element Data

BEAM	Elem ID Node1 Node2 Material Geom L_Coor Ecc1 Ecc2
Parameter	Description
Elem ID	User defined (external) element number
Node1 Node2	Node 1 of the beam is connected to the user defined (external) node number. Node 2 of the beam is connected to the user defined (external) node number.
Material	User defined material number defining the material properties of the element
Geom	User defined geometry number defining the geometry of the element
L_Coor	User defined unit vector number defining the local coord. system of the element. If omitted, a default local coordinate system will be used, (local zx-plane is parallel with global zx-plane except for vertical members which have the local zx-plane parallel with the global xy-plane).
Ecc1 Ecc2	Node 1 of the beam has an eccentricity defined by user defined Ecc1. Node 2 of the beam has an eccentricity defined by user defined Ecc2.
	NOTE! Zeros at the end of the record may be omitted.

With this record, the user defines a beam element to be used in the finite element analysis.

Example 1:

BEAM 100200 100 200 1174

defines a beam element with ID = 100200, connected to the two nodes with ID = 100 and 200. Material with ID = 1 defines the material properties and geometry with ID = 17 defines the cross section. The local coordinate system is defined by the unit vector with ID=4. No eccentricities.

Example 2:

BEAM 100200 100 200 1 17 4 33 34

defines the beam in Example 1 with following difference:

End 1 of the beam has an eccentricity defined by an eccentricity vector with ID = 33. End 2 of the beam has an eccentricity defined by an eccentricity vector with ID = 34.

SPRNG2GR	Elem ID Node Material L_Coor Ecc
Parameter	Description
Elem ID	User defined (external) element number of the spring to ground.
Node	The spring is connected to the user defined (external) node number.
Material	User defined material number defining the spring characteristic.
L_Coor	User defined transformation matrix number defining the local coordinate system of the spring. If omitted, local coordinate system and global system are equal.
Ecc	The spring to ground has an eccentricity defined by user defined Ecc.
	NOTE! Zeros at the end of the record may be omitted.

With this record, the user defines a 1 node spring to ground element to be used in the finite element analysis.

Example 1:

SPRNG2GR 1020 85 1020

defines a spring to ground element with ID = 1020, connected to the node with ID = 85. The spring characteristic is defined by a material with ID = 1020. The local coordinate system is parallel to the global system, and no eccentricity is defined.

Example 2:

SPRNG2GR 1020 85 1020 200 33

defines the spring in Example 1 with following difference:

The local coordinate system of the spring is defined by the *NODTRANS* record with ID = 200. The spring has an eccentricity defined by an eccentricity vector with ID = 33.

MEMBRANE	Elem ID nod1 nod2 nod3 nod4 mat geom e1 e2 e3 e4
Parameter	Description
Elem ID	User defined (external) element number
nod1 nod2 nod3 nod4	Node 1 of the membrane is connected to the user defined (external) nod1. Node 2 of the membrane is connected to the user defined (external) nod2. Node 3 of the membrane is connected to the user defined (external) nod3. Node 4 of the membrane is connected to the user defined (external) nod4.
mat	User defined material number defining the material properties of the element
geom	User defined geometry number defining the thickness of the element
e1 e2 e3 e4	Node 1 of the membrane has an eccentricity defined by user defined e1. Node 2 of the membrane has an eccentricity defined by user defined e2. Node 3 of the membrane has an eccentricity defined by user defined e3. Node 4 of the membrane has an eccentricity defined by user defined e4. NOTE! Zeros at the end of the record may be omitted.

With this record, the user defines a membrane element to be used in the finite element analysis.

Example 1:

MEMBRANE 1234 1234 100 88

defines a 4 node membrane element with ID = 1234, connected to the four nodes with ID = 1, 2, 3 and 4. Material with ID = 100 defines the material properties and geometry with ID = 88 defines the thickness.

No eccentricities.

QUADSHEL	Elem ID nod1 nod2 nod3 nod4 mat geom e1 e2 e3 e4
Parameter	Description
Elem ID	User defined (external) element number
nod1 nod2 nod3 nod4	Node 1 of the shell is connected to the user defined (external) nod1. Node 2 of the shell is connected to the user defined (external) nod2. Node 3 of the shell is connected to the user defined (external) nod3. Node 4 of the shell is connected to the user defined (external) nod4.
mat	User defined material number defining the material properties of the element
geom	User defined geometry number defining the thickness of the element
e1 e2 e3 e4	Node 1 of the shell has an eccentricity defined by user defined e1. Node 2 of the shell has an eccentricity defined by user defined e2. Node 3 of the shell has an eccentricity defined by user defined e3. Node 4 of the shell has an eccentricity defined by user defined e4. NOTE! Zeros at the end of the record may be omitted.

With this record, the user defines a 4 node quadrilateral shell element to be used in the finite element analysis.

Example 1:

QUADSHEL 1234 1234 100 88 100

defines a 4 node shell element with ID = 1234, connected to the four nodes with ID = 1, 2, 3 and 4. Material with ID = 100 defines the material properties and geometry with ID = 88 defines the thickness.

Node 1 of the shell has an eccentricity defined by Ecc. vector with ID = 100. The other 3 nodes have no eccentricity.

TRISHELL	Elem ID nod1 nod2 nod3 mat geom e1 e2 e3
Parameter	Description
Elem ID	User defined (external) element number
nod1 nod2 nod3	Node 1 of the shell is connected to the user defined (external) nod1. Node 2 of the shell is connected to the user defined (external) nod2. Node 3 of the shell is connected to the user defined (external) nod3.
mat	User defined material number defining the material properties of the element
geom	User defined geometry number defining the thickness of the element
e1 e2 e3	Node 1 of the shell has an eccentricity defined by user defined e1. Node 2 of the shell has an eccentricity defined by user defined e2. Node 3 of the shell has an eccentricity defined by user defined e3. NOTE! Zeros at the end of the record may be omitted.

With this record, the user defines a 3 node triangular shell element to be used in the finite element analysis.

Example 1:

TRISHELL 123 10 20 30 100 88

defines a 3 node shell element with ID = 123, connected to the three nodes with ID = 10, 20 and 30.

Material with ID = 100 defines the material properties and geometry with ID = 88 defines the thickness.

No eccentricities.

SOLID8 Elem ID n1 n2 n3 n4 n5 n6 n7 n8 mat	
Description	
User defined (external) element number	
Node 1-8 of the solid-element is connected to the user defined (external) nodes.	
User defined material number defining the material properties of the element	

With this record, the user defines a 8 node hexahedron solid element to be used in the finite element analysis.

BEAMLOAD	Load Case Elem ID qx1 qy1 qz1 qx2 qy2 qz2
Parameter	Description
Load Case	Load Case Number
Elem ID	User defined (external) element number, (beam element)
qx,qy,qz ₁	Intensity in X-, Y- and Z-direction at end 1 of the beam, (Global direction).
qx,qy,qz ₂	Intensity in X-, Y- and Z-direction at end 2 of the beam, (Global direction). If end 2 intensities are omitted, end 1 intensities are used, i.e. uniform distributed load.
	NOTE! Zeros at the end of the record may be omitted and will be treated as zero load.

With this record, the user defines a distributed beam element load.

Example 1:

```
BEAMLOAD 5 1020 1000.0
BEAMLOAD 5 1020 1000.0 0.0 0.0
BEAMLOAD 5 1020 1000.0 0.0 0.0 1000.0 0.0 0.0
```

define all a uniform distributed load with intensity 1000 in global X-direction acting at element 1020 with load case number 5.

Example 2:

```
BEAMLOAD 5 1021 0.0 1000.0 0.0 0.0 2000.0 BEAMLOAD 5 1021 0.0 1000.0 0.0 0.0 2000.0 0.0
```

define both a distributed load with intensity 1000 in global Y-direction at end 1 of element 1021 and intensity 2000 at end 2 of the element. The load case number is 5.

PRESSURE	Load Case Elem ID p1 p2 p3 p4
Parameter	Description
Load Case	Load Case Number
Elem ID	User defined (external) element number, (2-D element)
p1-p4	Normal pressure intensity at node 1-4 of the element.
	NOTE! If only p1 is specified, p2-p4 are given the same intensity, i.e constant pressure over the entire element surface.

With this record, the user defines a normal (non conservative) pressure load.

Example 1:

PRESSURE 2 1234 100

PRESSURE 2 1234 100 100 100 100

define both a constant normal pressure with intensity 100 acting at element 1234 with load case number 2.

Example 2:

PRESSURE 4 1234 100 200 300 400

defines a normal pressure with intensity 100 at node 1, 200 at node 2, etc. of element 1234. The load case number is 4.

SHELLOAD Load Case qx qy qz <list type=""> [Data]</list>	
Parameter	Description
Load Case	Load Case Number
qx,qy,qz	Intensity in X-, Y- and Z-direction, (Global direction).
<list type=""></list>	Definition of the ID list (next parameter(s)), two different list types are available:
	Element: The actual shell load is assigned to the elements given under [Data]
	Material: The actual shell load is assigned to shell elements with material ID's given in [Data]
[Data]	List of Element ID's (if type=element) or Material ID's (if type=material)
	NOTE!: No ID's specified has same meaning as specifying all actual ID's

With this record, the user defines a distributed (*conservative*) shell element load referred to Global coordinate system.

Example 1:

SHELLOAD 5 0.0 0.0 -1000.0 *Element* 1020 2020 3030 Defines a uniform distributed load (load case number 5) with intensity -1000 [N/m²] in global Z-direction for elements 1020, 2020 and 3020.

Example 2:

SHELLOAD 3 0.0 0.0 -2200.0 *Material* 245 355

Defines a uniform distributed load (load case number 3) with intensity –2200 [N/m²] in global Z-direction for all shell elements referred to material ID's 245 or 355.

Example 3:

SHELLOAD 4 0.0 0.0 -2000.0 *Element* SHELLOAD 4 0.0 0.0 -1000.0 *Element* 1020 2020 3030

Defines a uniform distributed load (load case number 4) with intensity –2000 [N/m²] in global Z-direction for all shell elements in the model, except for the elements 1020, 2020 and 3020, which get an intensity of –1000.

REFINE	N_divide Elem 1 Elem 2 Elem 3
Parameter	Description
N_divide	Each of the specified beam elements should be divided into 'N_divide' elements.
Elem 1,	User defined (external) element numbers of the elements to be refined.
	NOTE! 1: If no elements are specified, all beam elements are refined as specified.
	2: If an element is defined with initial deformations , (GIMPER, GELIMP), the generated nodes between the original beam ends will follow the actual imperfection curve.

With this record, the user specifies elements to be sub-divided.

Example 1:

REFINE 4 1020 1030 1040

REFINE 10 1050

defines that elements 1020, 1030 and 1040 should be divided into 4 elements and element 1050 into 10.

Example 2:

REFINE 3

REFINE 8 1050

defines that all beam elements in the model should be divided into 3 elements except element 1050 which should be divided into 8.

UNITVEC	Trans ID unix uniy uniz
Parameter	Description
Trans ID	Unit vector number (external) referred to in f.inst record *BEAM*.
unix uniy uniz	Unit in global coordinates. The vector specifies the direction along local element z-axis.

With this record, the user specifies a unit vector to be used in connection with f.inst. defining local coordinate system of beam elements.

This record may be repeated.

ECCENT	Ecc ID ex ey ez
Parameter Ecc ID	Description Eccentricity number (external) referred to in f.inst record *BEAM*.
ex ey ez	Eccentricity vector in global coordinates. The vector points from the global node towards the local element node.

With this record, the user specifies an eccentricity vector.

ADDMBEAM	ADDMBEAM mx my mx Elem_1 ID Elem_2 ID	
Parameter	Description	
mx my mz	Added mass intensity of the local X-direction of the beam element. Added mass intensity of the local Y-direction of the beam element. Added mass intensity of the local Z-direction of the beam element.	
Elem_1 ID Elem_2 ID	User defined (external) element number 1, (beam element) User defined (external) element number 2 .	
	NOTE! If no elements are specified, all beam elements are specified with the actual added mass.	

With this record, the user defines added mass data for beam elements.

Example 1:

ADDMBEAM 0 1000 1000

defines added mass in X-direction = 0.0, Y-and Z direction : 1000 applied on all beam elements.

This record may be repeated.

BANANA	Offset Angle
Parameter	Description
Offset	Maximum offset divided by element length. (default = 0.0015)
Angle	Orientation of offset. Specified in degrees counter-clockwise from the local element z-axis, (default = 0°)
	NOTE! If no parameters are defined, all beam elements will get an initial out of straightness of 0.15%.
With this record, the user defines the out of straightness of the beam elements.	

NOTE! For physical members divided into more than one beam element, the coordinates of the nodes along the physical member are moved according to the specified offset and orientation.

The updated coordinates are printed on the .out file.

This record is given once!

2.5.4 Cross Section Data

PIPE Geom ID D _o T Shear_Z	
Description	
User defined (external) geometry number	
Outer Diameter of the pipe.	
Wall thickness of the pipe.	
Shear area factor of Y-axis. Shear area = Shear_Y * Calculated shear area. Shear area factor of Z-axis. Shear area = Shear_Z * Calculated shear area	
If Shear_Y and Shear_Z are omitted or equal to zero, Shear_Z and Shear_Z are both set equal to 1.0.	

With this record, the user defines a pipe cross section to be used in the finite element analysis.

Example 1:

PIPE 45025 0.450 0.025

defines a pipe identified by the ID: 45025 with outer diameter = 0.45 and wall thickness = 0.025. The shear area is not scaled, (calculated shear area is used directly).

BOX Geom ID H T_side T_bott T_top Width Shear_Y Shear_Z	
Parameter	Description
Geom ID	User defined (external) geometry number
Н	Height of the profile.
T_side	Thickness of the side walls of the RHS-profile.
T_bott	Thickness of the bottom "flange" of the profile.
T_top	Thickness of the top "flange" of the profile.
Width	Width of the box profile.
Shear_Y Shear_Z	Shear area factor of Y-axis. Shear area = Shear_Y * Calculated shear area. Shear area factor of Z-axis. Shear area = Shear_Z * Calculated shear area
	If Shear_Y and Shear_Z are omitted or equal to zero, Shear_Z and Shear_Z are both set equal to 1.0.
With this record, the user defines a rectangular hollow cross section to be used in the finite element analysis.	
This record may be repeated.	

IHPROFIL	Geom ID H T_web W_top T_top W_bott T_bott Shear_Y Shear_Z						
Parameter	Description						
Geom ID	User defined (external) geometry number						
H T_web	Height of the profile. Thickness of the web.						
W_top T_top	Width of the top flange Thickness of the top flange						
W_bott T_bott	Width of the bottom flange Thickness of the bottom flange						
Shear_Y Shear_Z	Shear area factor of Y-axis. Shear area = Shear_Y * Calculated shear area. Shear area factor of Z-axis. Shear area = Shear_Z * Calculated shear area						
	If Shear_Y and Shear_Z are omitted or equal to zero, Shear_Z and Shear_Z are both set equal to 1.0.						
With this record, the user defines a I/H profile to be used in the finite element analysis.							
This record may be repeated.							

PLTHICK	Geom ID Thick				
Parameter	Description				
Geom ID	User defined (external) geometry number				
Thick	Plate Thickness				
With this record, the user defines a plate thickness to be used in the finite element analysis.					

This record may be repeated.

LSECTION	Geom ID H T_side Width T_bott I_symm						
Parameter	Description						
Geom ID	User defined (external) geometry number						
H T_side	Height of the profile. Thickness of the vertical part.						
Width T_bott	Width of the profile Thickness of the horizontal part of the profile						
I_symm	Symmetry switch: 0 or omitted : "opposite L" 1 : L						
	NOTE! If thickness of horizontal part is omitted, thickness for the vertical part is used. If both width and thickness of the horizontal part are omitted, the width is equal to the height and the thickness for the vertical part is used.						

With this record, the user defines an open angle section to be used in the finite element analysis.

Example 1:

LSECTION 15015 0.150 0.015

defines a regular angle with thickness 0.015 and width = height = 0.150

GENBEAM	Geom ID Area It ly Iz Wpx Wpy Wpz Shy Shz					
Parameter	Description					
Geom ID	User defined (external) geometry number					
Area	Cross sectional area					
It Iy Iz	Torsion moment of inertia Moment of inertia about y-axis Moment of inertia about z-axis					
Wpx Wpy Wpz	Plastic torsional section modulus Plastic sectional modulus about y-axis Plastic sectional modulus about z-axis					
Shy Shz	Shear area in direction of y-axis Shear area in direction of z-axis					

With this record, the user defines a general cross section to be used in the finite element analysis.

2.5.5 Material Data

SPRIDIAG	Mat ID S ₁₁ S ₂₂ S ₃₃ S ₄₄ S ₅₅ S ₆₆						
Parameter	Description						
Mat ID	User defined (external) material number						
S ₁₁ - S ₆₆	Diagonal terms of the linear 6x6 spring to ground stiffness matrix						
	NOTE! Zeros at the end of the record may be omitted.						

With this record, the user defines a diagonal spring to ground stiffness matrix to be used in the finite element analysis.

Example 1:

SPRIDIAG 33 1.0E4

Defines a spring to ground stiffness identified by the ID: 33 with stiffness 1.0E4 in global X-direction. The 5 omitted diagonal terms are all set equal to zero

This record may be repeated.

SPRIFULL							
	S ₆₁ S ₆₂ S ₆₃ S ₆₄ S ₆₅ S ₆₆						
Parameter	Description						
Mat ID	User defined (external) material number						
S ₁₁ - S ₆₆	36 terms of the linear 6x6 spring to ground stiffness matrix						
	NOTE! All 36 stiffness terms must be given.						
With this record, the user defines a full spring to ground stiffness matrix to be used in the finite							

With this record, the user defines a full spring to ground stiffness matrix to be used in the finite element analysis.

HYPELAST							
Parameter	Description						
Mat ID	User defined (external) material number						
P ₁ δ ₁ P ₂ δ ₂ P _n δ _n	Definition of the first point of the force/displacement curve Definition of the second point of the force/displacement curve Definition of the last point of the force/displacement curve						
	NOTE! Only points in 1. and 3. quadrant are legal, and the first point defines the 'bottom left' end of the curve. Max 25 points available.						

With this record, the user defines a hyperelastic P- δ curve to be used in connection with definition of a nonlinear spring matrix.

Example 1:

defines a hyperelastic P- δ curve by 4 discrete points identified by the material number 444.

ELPLCURV	Mat ID $P_1 \delta_1 P_2 \delta_2 \dots P_n \delta_n$						
Parameter	Description						
Mat ID	User defined (external) material number						
P ₁ δ ₁ P ₂ δ ₂ P _n δ _n	Definition of the first point of the force/displacement curve Definition of the second point of the force/displacement curve Definition of the last point of the force/displacement curve						
	NOTE! Only points in 1. and 3. quadrant are legal, and the first point defines the 'bottom left' end of the curve. Max 25 points available.						

With this record, the user defines an elastoplastic P- δ curve to be used in connection with definition of a nonlinear spring matrix.

Example 1:

defines an elastoplastic P- δ curve by 4 discrete points identified by the material number 555.

ELASTIC	Mat ID E Poiss Rho Therm						
Parameter	Description						
Mat ID	User defined (external) material number						
E Poiss Rho Therm	E modulus Poison ratio Density Thermal expansion coefficient						
NOTE! Zeros at the end of the record may be omitted.							
1400							

With this record, the user defines an elastic isotropic material.

2.5.6 Misc Data

GRAVITY	Load Case Ax Ay Az					
Parameter	Description					
Load Case	Load Case Number					
Ax Ay Az	Acceleration field in global X-direction Acceleration field in global Y-direction Acceleration field in global Z-direction					
	NOTE! Zeros at the end of the record may be omitted and will be treated as zero acceleration.					

With this record, the user defines a distributed beam element load.

Example 1:

GRAVITY 1 0.0 0.0 -9.81

defines an acceleration field of 9.81 in negative Z-direction. The load case number is 1.

2.5.7 UFO Examples

Zayas Frame

The plane frame described in the figures below consists of 13 nodes and 23 beam elements.

A concentrated force is acting at node 10 in positive X-direction in addition to the gravity load.

All nodes are free except the two bottom nodes, 120 and 130.

The frame consists of pipes and one I/H profile.

The structure is described in UFO-format at the next page.

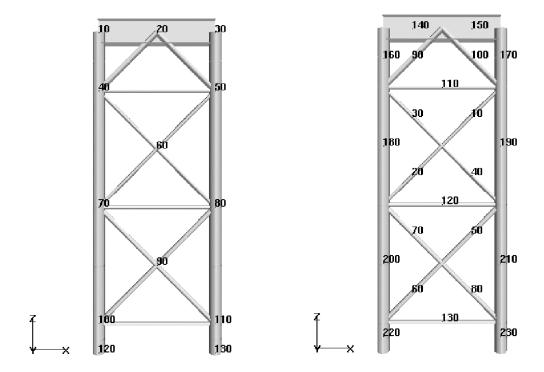


Figure Error! No text of specified style in document.-1 Node Numbers No text of specified style in document.-2 Element Numbers

Figure Error!

UFO input file describing the Zaya's Frame:

HEAD	z	AYAS FR described in UFO - Forma	L					
	 O D E							
NODE NODE NODE NODE NODE NODE NODE NODE	Node ID 10 20 30 40 50 60 70 80 90 100 110 120	X .000 1.524 3.048 .000 3.048 1.524 .000 3.048 1.524 .000 3.048	.000 .000 .000 .000 .000 .000		Z 8.382 8.382 6.858 6.858 5.334 3.810 2.286 .762 .762		dary	
NODE	130	3.048	.000			1 1		
' E I	LEMENT							
' G 1	30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230		1 1 1 1 1 1 1 1 1 3 3 2 2 2 2 2 2 2 2	44 44 33 33 22 44 45 55 11 11 11 11	1 2 2 1 1 2 2 2 1 2 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ecc:	1	ecc2
PIPE PIPE PIPE PIPE	Geom ID 1 2 3 4		mh i ale					
' ' IHPROFIL	Geom ID 5	H T-web	W-top T- 1.22 0.	-top .050	W-bot 1.22	T-bot :	Sh_y	Sh_z
UNITVEC	Loc-Coo 1 2 3 4	dx 707 .707 .000	dy .000 .000 .000 1.000		dz .707 .707 1.000 .000			
' L (OAD							
NODELOAD		Node ID						
GRAVITY	Load Case 5	Acc_X 0	Acc_Y A	Acc_Z 9.81				