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3.1

INTRODUCTION

The computer code FAHTS, (Fire And Heat Transfer Simulations), has been developed in
connection with the SINTEF Project:

"Integrated Analysis of Steel and Aluminium Structures Exposed to Fire"

FAHTSisdesigned to form a'link’ between the fire simulations, (KAMELEON/FIRINT) and
the mechanical response simulations, (USFOS), but has several simplified fire scenario
models available in addition.

The structura description file used by USFOS is also used by FAHTS and thisimplies that
the beam element FEM-model has to be re-meshed automatically to obtain a 3-D
representation of the structure. The results from the temperature simulations are transferred
back to beam element temperature load data required by USFOS.

FAHTS isaFinite Element program for transient heat transfer simulations using an implicit
time integration scheme to perform the incremental solution.

FAHTS isbased on agenera formulation but is specia designed to be an effective tool used
in connection with USFOS.
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3.2 FUNDAMENTAL THEORY OF THERMAL ENERGY BALANCE

321 Constitutive equations and definitionsfor heat flow calculations
) 24
q
z
y
X
Fourier'slaw for heat flow :
oT 0 oT 0 oT 0 oT
c— = —(k—) + —(k,—) + —(k,—) + 321
P ot ax( Xax) ay( yay) az( Zaz) 9 ( )
Where:
P . Mass density [ kg/m?]
c . Heat capacity [ JkoK]
T  : Temperature [ K]
t : Time [ sec ]
Kyy. - Thermal conductivity inx, y and z direction [ W/mK]
X,y,Z : Spatial coordinates [ m ]
q . Heat input to the system [ W/im?
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3.2.2 Spatial discretization

The Finite Element appr oach:

For the general caseit isimpossible to obtain a analytical solution for the transient heat transfer problem,
and in this section the transformation of the differential equation describing the continuous problem to a
discrete model applicable for an efficient numerical solution approach is discussed.

For the 2-dimensional case the differential equation, 3.2.1 yields:
oT 0 oT 0 oT
c— = —(k—) + —(k,—) +q (3.2.2)
ot T Kax’ ey Yoy
The term g denoted the heat generation contribution will in fact fro the 2-dimensional case include the
terms connected to heat exchange over the intersurface between material and surroundings.

It should be noted that this term does not represent a true boundary condition in mathematical terms, and
ishereq = qs/ t where g, is the intermedium cross heat flow, (f.inst. netto radiant heat flux), and t isthe
thickness of the continuum.

thickness

X

0.0

Figure 3.2.2.1 Definition of symbols

The boundary conditions inherent for this type of problem may be written as:

T-T=0 onT,

(3.2.3)
oT orT =
— +k—-q=0 onI"

“on,  Yan, q

where T and q denotes prescribed values of temperature and heat flow across the (true) boundaries of the
continuous system, and n, and n, are the direction normal to the boundary I" with prescribed conditions.

The above differential equations may for convenience be written on the following general form:

i"\ka\pro\251673\um-03.w51 The SINTEF Group 1994-10-15



FAHTS USER'S MANUAL 3-5
Theory

A(u)

Lu+p=0 in domain Q
(3.24)
B(u)

Here the linear operators L and M are introduced to indicate that the formulation in question islinear in
the unknownu = T.

M+t=0 indomainT

In general two distinct procedures are available for obtaining discrete approximations to the above
continuous problem description. The first one, which will employed in the present context, is the method
of weighted residuals, (or better known as the Galerkin method). The second method is the formation of
variational functionals for which the conditions for stationarity is considered.

In the following the weighted residual method will be applied for the transient heat conduction problem
in order to arrive to asystem of ordinary differential equations from which the unknown temperature T may
be calculated.

It is here convenient to perform what is termed a partial discretization which means that the real domain
of independent variables Q(x,y,t) is reduced to a sub-domain Q(x,y) leaving out the time variable t.

As anext step, s suitable time stepping algorithm may be applied to the discrete system of equationsin
order to calculate the time-dependent solution.

Asthe differentia equation(s) and boundary conditions according to (3.2.3) have to be zero at each point
in the domain Q(x,y), it follows that:

va(T)dﬁ + jT/B(T)dI‘ =0 (3.25)

wherev and v are arbitrary functions.

Here A(t) and B(T) represent one differential equation and the corresponding boundary condition. The
proof for this statement is obvious as it is easily seen that if A(T)#0 at any position in the domain, a
function v may be found which makestheintegra in ( 3.2.5) different from zero.

Next, the continuous unknown temperature T defined in the domain Q(x,y,t) is approximated by the
expansion:

T(xy,t) = zn: N(xy)T,(t) = NT (3.26)
i-1

where N;(x,y) denote the n shape functions prescribed in terms of the independent variables x and y
defining the sub-domain Q, and T; the unknown time dependent parameters, (in FEM terms the generalized
coordinates).

Obvioudly, the spatial approximation made in ( 3.2.6 ) cannot satisfy the differential equation. An
approximation to the integral formin Eq ( 3.2.5) by instead of the arbitrary function v, we introduce a
finite set of prescribed functions:

sl

V=w,V=w,,j=1,n

jo

which gives a set of ordinary differential equations:

fij(NT)dQ + ijB(NT)dI‘ =0, j=1,n (3.27)
Q T
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InEq (3.2.7) A(N T ) represents aresidua resulting from the substitution of the approximation in Eq
(3.2.6) into the differential equation, and B(N T ) aresidua on the boundary conditions. Eq ( 3.2.7 ) thus
represents aweighted integral of these residuals. By choosing the weight function w;" equal to the shape
functions N; the Galerkin method is obtained / /.

This method will generally lead to symmetric equation system matrices which is a preferable property in
the numerical solution process.

Furthermore, Eq ( 3.2.7 ) ensures that the error (or residual) introduced by the spatial discretization
averaged over the integration domain is zero, or is correct in terms of energy.

The selection of suitable shape functions will be introduced later, but at this stage it is interesting to note
that these functions may be chosen on the element level and integration over the total domain Q is obtained
by summation over all elements, iethefinite element method.

Alternatively, "global" shape functions may be chosen if desired.

For the transient heat transfer problem we have:

9k 9y L Ok Ty Lol
A(T)_ax(kxax) ay(kyay) Qreg ~F

B(T)=T-T=0 onT, (3.2.8)

JT
any

onT’

I
ol
I
o

oT
— +
K‘&nx
On basisof Eq ( 3.2.7) we get:

3, 0Ty . 3, oT C0Tan s (o 9T
éwj[&(kxa) a—y(&a—y)]dA éV\/j[Q c— oA PfW,[kan qldl’ = C

q

(3.29)
Thefirstintegral in ( 3.2.9) isintegrated by parts by use of Greenstheorem:

3, aT ow. ~ oT oT
w, — (k. —)dxd - [—L(k =) dxd w. (k —)n_dl"
é ’ax(kxax) Y éax (anX) y* f ‘(kxax) X

(3.2.10)

o, oT ow, . aT oT
éwlay(&ay) - éay (&ay) " ywrwl(&ay)ny

Thus, re-writing Eq ( 3.2.9) we get:
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Ty, W 9Ty _ _ o7 N
‘[[ (& DE oy (65, W(Q - o) Ty

oT oT — 0T oT -
w(k—n + k=—n)d + {w(k—n + k—n -qg)dl' =0 3.211
f“&wx 5™ !K&wx K5 @ (3.2.11)
q

By putting w, = -w; (asthe weight functions originally could be chosen arbitrarily and making use of T" =
I, + T, weget:

OW.
fwj[a—v)\:’(kx%) '(K/—)]dQ+fWCp T@ - [deQ
Q

_ oT oT ) .
[qudI‘ 1[wj(kxgnx + kya—yny)dI‘ =0 j=1,n (3.2.12)
T

Itis observed from Eq ( 3.2.12) that the natural boundary condition

B(T) = kx(g—nT il -q-= on T, isautomatically take care of.
X

an

Furthermore, the last termin Eq ( 3.2.12) disappear if we select w;, = 0 on the boundary I';.

When introducing the weight functions according to Galerkin, w; = N; and also invoking Eq ( 3.2.6 ) we
obtain:

Q

N,QdQ + [Ngd
-l |

q

(3.2.13)

If theintegrationin Eq ( 3.2.13) is performed over afinite element, we re-write the heat flow balance on
the following form:

mT + kT = Q, +Q,=Q (3.2.14)

where
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K [aNJ'kX&'\'i o, aN‘]olA N, kN, dA (element conductivity matrix)
= + = , , ement conductivity matrix
f ox X ox oy 5 oy f X Y
Ae Ae
m = prNj N.dA = fch TNdA (element specific heat matrix)
Ae Ae
Q, = fNdeA = fN QdA (element heat flow vector, surface )
Ae Ae
Q, = fNjadI = [Nadl (element heat flow vector, edges)
LB I‘B
(3.2.15)
In Eq ( 3.2.15) the matrix notation for the element matrices and load vectors are introduced.
For the case when the boundary heat flow denoted q is governed by temperature gradients, ie:
EI = q_c * OC(Tbound - TS) (3'2'16)
where
q. : Constant heat flow term
o : "total" heat flow coefficient
Toora - El€ement boundary temperature
T, : Temperature of surrounding objects exchanging heat with the el ement
which inserted into the equation for Q,in Eq ( 3.2.15) gives:
fNjadI - [Nj[ O *+ 0Ty~ To) 1dl =
Fq Fq
(3.2.17)

[Nj(q_c - aTyd + fNjochounddl

I I

Thefirst termin Eq ( 3.2.17 ) represents aload term which can be directly added to the local vector Q.
However, the second term contains the unknown temperature and represents a contribution to m which may
be written on the form:

m, = ochBTNBdI
Fq

where Ny denotes the boundary shape function which is obtained from N with suitable boundary
coordinatesinserted, (£ or n ).
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The Fourier equation for the entire system is then expressed on matrix form as follows:

MiTi + KT, =Q (3.2.18)

Where:
K; : Therma Conductivity Matrix at timei
T, : Nodal Temperature Vector at timei
M, : MassMatrix including heat capacity at timei
T, : Nodal Temperature Rate Vector at timei
Q, : Noda Consistent Heat Vector at timei
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3.2.3 Time Domain Integration

In section 3.2.2 the transient temperature field problem was discretized in the space domain resulting in
alinear set of ordinary different equations.

STATIONARY SOLUTION
The specia case, stationary solution is solved as follows:

Theinertiaterm is removed from the equation:

KT = Q
with solution:
T=K1Q
K : Thermal Conductivity Matrix, (must be temperature independent)
T : Noda Temperature Vector, (the solution)
Q : Nodal Consistent Heat V ector.

TRANSIENT SOLUTION

For the heat transfer problem non-linearities have to be accounted for as both the conductance and heat
capacity in genera are temperature dependent in addition to the heat load vector which is strongly
dependent on the temperature.

The problem may for this case be written on the form:
M(T)T + K(T)T = Q(T) (3.2.19)

In this section the numerical integration of Eq. ( 3.2.19) in the time domain is described.
The solution will be formulated on a recursive incremental form to find an approximation of the
temperature state T, at timet; given the solution T, at timet,; assuming atimeinterval At =t, - t,_,.

Inthetimeinterval At thetemperature T can be taken to vary as a polynomial, and for the present case it
is assumed that sufficiently accuracy is obtained by selecting the linear expansion given by:

T=T(t) =T, + i(Ti - T, (3.2.20)

wheret =1t -t;,.
This approximation isillustrated in Figure 3.2.3.1.

Employing the weighted residual approach in the time domain Eq. ( 3.2.19) gives:.

At
[W(MT + KT - Q)dt = 0 (3.2.21)
0

where w represents a yet undetermined weight function.
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Figure 3.2.3.1 Approximationto T in the time domain

Introducing aweight parameter 6 given by /Zienkiewicz/ :
At

d
[th

(3.2.22)

eq (3.2.21) can be written as:

At At At

1
fWM (T, - Ti—l)Edr + fWK[ T, + i(Ti - T.,) ]dt = [WQd‘E (3.2.23)
0 0 0

Assuming M and K constant in the small time interval:

1

M - T oo+ KE Ty + 0(T - Ty ] = Q (3.2.24)

where Q represents an average of the equivalent load vector. If the heat flux 'load’ Q is assumed to vary as
alinear function over thetime interval At the averaged heat flux becomes:

Q=Q, +6(Q -Q.) (3.2.25)
For the nonlinear problem Eq ( 3.2.24 ) may be re-written to the incremental form:
Mi% F KT, + OKAT = Q (3.2.26)
1 1= 1
(K, + @Mi)AT = 6Q - 6KiTi L (32.27)
1 1-6 1
(K; + @Mi)AT =Q + 6 Q1 - EKiTl—l (3.228)

In the present FAHTS implementation the weight parameter is chosen to @ = 1/2 corresponding pure
averaging over the timeinterval At. This approach is known as the Crank - Nicolson or trapezoidal rule
[Zienkiewicz/.

If theterm K; T, ; isreplaced by K ; T, the following incremental form is obtained:

i"\ka\pro\251673\um-03.w51 The SINTEF Group 1994-10-15
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2
(K, + EMi)AT -Q +Q, - 2K T, (3229)

Thistype of equation is usually solved by employing some sort of iterative scheme, f.insthe well known
Newton - Raphson procedure.

Here a procedure with incrementation and equilibrium correction is employed.

Hence theterm Q,; is substituted by:

Qi =M T, + KTy
giving
2 .
(K; + EMi)AT =Q + M T, - K Ty (3:2.30)
which may be written on the form:
A AT, =B
with solution:

AT, = A7'B

where A = (K + iMi)
At

B=Q - KTy +M_T,
The unknown temperature solution at time 'i";

T =T, +AT,

|
Comments:
® |tisassumed that the nonlinearity arising from temperature dependent ¢ and k are moderate. For the
problems when phase changes are involved, it is recommended to include control of correct enthal py

calculation.

® The heat flux load Q(t) is assumed to vary dowly asafunction of t such that alinear representation
over thetimeinterval Atisredlistic.

® The conditions to be satisfied at timet = 0 can be found from Eq ( 3.2.19):
. -1
Ty = Mg (Q, - K,Tp)
® The Crank - Nicolson agorithm is unconditionally stable and the order of accuracy is better than
two.

® By selecting the weight parameter 0 to other values, other well known integration schemes are
obtained, (0 = 0: Explicit Euler, 0 =2/3: Gaerkin, 0 = 1 : Backward Difference).
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3.2.4 Surface radiant energy balance

NoODRPNWZ G T

ion between Surfaces

The two surfaces presented in figure 3.2.1 have the following characteristics:

Ey, : Emitted heat flux from surface 1
T, : Temperature of surface 1

€, : Emissivity coefficient of surface 1
E, : Emitted heat flux from surface 2
T, : Temperature of surface 2

€, : Emissivity coefficient of surface 2

Emitted energy from surface 1.

4
Ey =0e,Ty

Where:
o . Stefan-Boltzmann's constant  ( 5.67E-8 W/m?K*, S units! )

Emitted energy from surface 2:

4
Ey, = 0e,Ty

Surface 1 absor bs a fraction of the surface 2 emittance:

Esa = o‘sl Esz

i"\ka\pro\251673\um-03.w51 The SINTEF Group 1994-10-15
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Where:
E, : Absorbed energy at surface 1
ay  Absorption coefficient of surface 1

The netto radiation flux from surface 1 then yields:

Es = 0(esl-l-:l - o‘slesz-rsdé)

Where:
E. : Netto heat flux from surface 1 [ W/n? ]
Ty : Temperature of surface 1 [ K ]
€, . Emissivity coeff. of surface 1 [ non-difn
T, : Temperature of surface 2 [ K ]
€, . Emissivity coefficient of surface2 [ non-difn

oy - Absorption coefficient surface 2 [ non-difn

Assuming 'grey-body’ conditions, «; = €; , the netto radiation flux from surface 1 then yields:

E, = oesl(T541 - eszT;)

Assuming surface 2 being a'black-body’, €, = 1.0 , thefollowing special condition is obtained:

4 4
E, = 0ey(Ty - Ty)

If surface 2 represents only a fraction of the 'hemisphere’ observed from surface 1, the netto radiation
flux yields:

Where: T

Fi, : View T,
factor of 4
surface 2 |
non-dim ]

s1
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Figure 3.2.2 Radiation exchange between 'n' surfaces

Assuming 'n' number of surfaces 'visible' from surface 1 as described in figure 3.2.2. The netto
radiation then becomes:

n
E; = eq0( TSL;. - EFliesiTs?)
i1

Where:
F, : View factor of surface'i' observed from surface 1
Ty : Temperature of surface 1
€, : Emissivity coefficient of surface 1
Ty : Temperature of surface'i'
€5 . Emissivity coefficient of surface'i'

A negative radiation flux E, means netto absor ption.

i"\ka\pro\251673\um-03.w51 The SINTEF Group 1994-10-15
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3.2.5 Surface convection energy balance

The convection energy exchange between a surface and the surrounding fluid is calcul ated as follows:

E. = C (T, - Tg)

Where:
E. : Heat flux from surfaceto gas [ W/m? ]
C  : Convection Number [ W/im?K]
T, : Temperature of surface [ K ]
T, . Temperature of surrounding gas [ K ]

The convection number is dependent on the following parameters:

- Ve ocity of the surrounding gas
- Thermal conductivity for the gas
- Reynolds number at the current gas temperature

i:\ka\pro\251673\um-03.w51

The SINTEF Group 1994-10-15



FAHTS USER'S MANUAL 3-17
Theory

3.3 BASIC ELEMENTS

331 Quadrilateral heat transfer element

Figure 3.2.3 Isoparametric quadrilateral heat transfer element

The heat flow equation on element level:

mT, + kT, = q

The element conductivity matrix is defined as follows when k, =k, =k :
T T
k = k[(N,XN,X + NN, )dv
\
where N, denotes aiN .V isthe element volume.

X

The element mass matrix including heat capacity :

m = pcf(NTN)dV
\%

i"\ka\pro\251673\um-03.w51 The SINTEF Group 1994-10-15
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The consistent heat sour ce vector :

q - qf(NT)dV
\Y

Where
o : Mass density [ kg/m?®]
c . Heat capacity [ VkgK]
k : Thermal conductivity [ W/mK]
X,y : Spatia coordinates [ m ]
q : Heat flux in/out [ W/m?
N . Element interpolation polynom

The interpolation polynom N is defined as follows:

N, - %(1 L E)(L + m)

N, - %(1 -~ E)(1 + )
1

N, = (1 -6 - m)
1

N, = 2(1+ (L - m)

which gives alinear variation over the element.

Temperature variation over the element thickness is disregarded.

€ and n are the non-dimensional element coordinates ranging from -1 to 1.
The temperature field within the element is defined as follows:

T(EM)=NT
where T isthe nodal temperature vector.

The element coordinates within the element are defined similarly:

X(En)=Nx
y(&n)=Ny

In connection with the integration over the element volume, it is of interest to express the element
matrices and vectors as a function of the non-dimensiona variables € and n only.

The derivation: oN : N are used in the expression for the conductivity matrix.

ox oy
This derivation with respect on x and y should be transferred to derivation with respect on £ and n:

i"\ka\pro\251673\um-03.w51 The SINTEF Group 1994-10-15
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Partial derivation presented on matrix form:

9 ox 9yl |9
o o o X

3 _ 3 3 Y
o x| |2 Y
on on on| oy

where J isthe Jacobian matrix.

The inverse relationship is then obtained as follows:

9 a9
ox 0 0 0

= i n i i = J _l- AE
o x| | "
Iy an o€ | [on

The derivation with respect on x may then be expressed as follows:

1 ,0y ay
) = — _N) - _Nl
x detJ(an TS )

Similar expressions are obtained when derivation with respect ony.

The volume integral over the element expressed in § and n :

11 11
de = ffh(ﬁ,n)dA = ffh(ﬁ,n)detJdidn
v 11 171

where h(€,m ) =N h is the element thickness which may vary over the element and
h is the element thickness at the corners.

The element matrices are integrated numerically using Gaussian integration.
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332 Energy exchange

The netto element heat flux, g, has contribution from severa different terms:

Elementswith 1 outside and 1 inside, (hollow profiles):

]

Eri — 2 _— -~ Ere

ci

Figure 3.3.2.1 Energy exchange calculation terms at non-insulated surface, inside + outside

For non-insulated el ements the following terms contribute to the resultant element heat flux:

q=Ere"'Eoe-"Eri-"Eci
where:
E.: Netto surfaceradiant energy input at the exterior side of the element
E.: Netto surface radiant energy input at theinterior side of the element
E.: Netto surface convection energy input at the exterior side of the element
E;: Netto surface convection energy input at theinterior side of the element

N
|
Eri 2 _—> L - _— Ere
E.—1 - E,
-
N
| ) .
N insulation
A

Figure 3.3.2.2 Energy exchange calculation terms at insulated surface, inside + outside

For insulated elements the following terms contribute to the resultant element heat flux:
q=F +E; +Eg4

where:
E : Need energy 'leakage through the insulation

Elementswith 2 outsides, (open profiles):
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EreZ — -~ Ere1
Ecep ————— -

cel

Figure 3.3.2.3 Energy exchange calculation terms at non-insulated surface, 2 outsides

For non-insulated elements the following terms are contributing to the resultant element heat flux:

q = Erel + Ecel + Ere2 + Ece2

E.;: Need surface radiant energy input at the exterior side 1 of the element
E.,: Need surface radiant energy input at the exterior side 2 of the element
E..: Need surface convection energy input at the exterior side 1 of the element
E..: Need surface convection energy input at the exterior side 2 of the element

Bie
-

E > E
re2 W\ —1 +— 22— Eret
Ece2 —>< > B Ece1

ELo +E,
o
[ insulation

Figure 3.3.2.4 Energy exchange calculation terms at insulated surface, 2 outsides

For insulated elements the following terms are contributing to the resultant element heat flux:
q=FE; +E,
where:

E.: Need energy 'leakage through theinsulation at side 1 of the element
E,: Need energy 'leakage through the insulation at side 2 of the element
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3.33 Insulation

The quadrilateral heat transfer element may be 'protected' by thermal insulation on one or both surfaces.
In connection with the heat transfer calculations, the resultant energy 'leakage’ through the insulation
isof interest.

element
insulation

T,
§

—

o

Figure 3.3.3.1 Insulation Boundary Conditions

Temperatures within the insulation are not present in the system equations, each insulation element has
its own separated equation system which may not be alinear system.

It is assumed that the heat flow through the insulation is 1 dimensional because the thickness of the
insulation is of an order smaller than the outstretch in the surface directions.

Further, it is assumed that the temperatures in the main structure increase slower than the exposed side
of theinsulation, (that is why theinsulation is present), The main structure temperatures from the
previous incremental solution represents then afixed boundary condition at the interior side of the
insulation.

The resultant energy 'leakage’ trough the insulation is expressed as follows:
EI = f(Te'Ts' Ere' Ece)

where:
T.: Basic element temperature
T,: Insulation surface temperature

The need surface energy input is dependent on T, and it is then necessary to solve a fourth order
equation which includes radiation energy baance, convection energy balance and heat transfer through
theinsulation itself, (conduction, accumulation).
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MASSLESS, TEMPERATURE DEPENDENT INSULATION, (typel):

The heat transfer through the insulation is defined as follows:
E = KM, -T,)

where:
K(T): Resultant thermal conduction

The characteristic temperatureis: T = %(Te + T,) and thistemperature s used to find the

current resultant thermal conduction.

If the insulation is exposed to f.inst. a standard fire, (gas with a prescribed temperature/time
development), the heat transfer through the insulation is calculated as follows:

E, =E, +E,

inserted for expressions for the heat transfer through the insulation, surface radiant energy balance and
surface convection energy balance:

4 4
K(T, - T = o0e(Tg - eng) + C(TS—Tg)

which gives the following 4'th degree equation to find the insulation surface temperature T, :
oeT. + (K+C)T, - (KT +oeg T/ +CT ) = 0

When the surface temperature is found the heat transfer through the insulation is known.
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3.34 View Factors

The view factor, F;;, is defined at the fraction of total radiant energy that leaves surface'i' which arrives

|]l
directly on surface'j', seefigure 3.3.4.1.

Figure 3.3.4.1 View Factor Calculation Terms

The view factor is expressed in the following equation:

cosb, cosG
ij = =] f jdAi
AI AR
Where
A A : Areaof surfacei and j

r . Distance between differential surfacesi and |

0, . Angle between surface normal, N;, and the radius line to surface dA,;
9, . Angle between surface normal, N;, and the radius line to surface dA,
. Surface Normal of differential surfaces dA; and dA,

If the areas A; and A are small compared with the distance r between them, the following simplified

equation may be used:

A, cosB; cos;

mr?
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3-25

sub-area'i'

Surface normal N,

Figure 3.3.4.2 Numerical Integration approach for View factor calculations

Figure 3.3.4.2 describes two arbitrarily shaped quadrilaterals with area A; and A,

Area l issub-divided into 'n' small enough areas for which the simplified view factor calculation are

valid. Similarly, area 2 is sub-divided into 'm' small areas.

The view factor F, is calculated as follows:

cosb, cos; AA
i

1 n m
F12=—EE

A i mr?

Where
. Areaof quadrilateral 1

. Areaof sub-areasi and |
. Distance between sub area surfacesi and
. Angle between surface normal, N;, and the radius line to surface dA,;
. Angle between surface normal, N;, and the radius line to surface dA,
j . Surface Normal of sub area surfaces A; and A,

>

2D > >

z
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335 Heat Accumulation Element
To account for thermal energy accumulation or the 'inertia effect due to the presence of a gas or afluid
inside hollow profiles, asimple 'Heat Accumulation Element' is introduced.

The element has no conduction terms, only alumped mass matrix, (diagonal matrix), is established for this
element.

The heat capacity is calculated as follows:

Alp,
mI =
n
where
m;,  : Lumped mass at hode i
A : Internal cross section area

I . Length of the member
Pi : Mass density of the interior fluid
n : Number of element nodes

Figure 3.3.5.1 Heat Accumulation Element Mass Matrix
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34TEMPERATURE ANALYSISMODEL FOR STRUCTURAL MEMBERS

34.1 Profile Types
TUBULAR MEMBERS

Tubular members are meshed as shown in figure 3.4.1.1.
The mesh refinement in the length- and circumferential directions are controlled by the user.

PirE

1 Structural Beam Element Heat Transfer Elements

H
eat transfer element mesh for tubular members
The heat transfer elements belonging to tubular members have 1 inside and 1 outside.

Only the outside is exposed to the actual fire scenario.

If insulation is prescribed for tubular members, only the outside surface of the heat transfer elements are
‘covered' with the actual thermal protection.

'Heat accumulation element’ is generated since the profile is hollow.
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RECTANGULAR HOLLOW SECTIONS (RHS/BOX)

RHS members are meshed as shown in figure 3.4.1.2.
The mesh refinement in the upper flange, ‘webs and the lower flange are controlled by the user.

Box

; ]
gu
re

3.

4.
1
2
H Structural Beam Element Heat Transfer Elements
ea

t transfer element mesh for Rectangular Hollow Sections

The heat transfer elements belonging to box profiles have 1 inside and 1 outside.

Only the outside is exposed to the actual fire scenario.

If insulation is prescribed for box members, only the outside surface of the heat transfer elements are
‘covered' with the actual thermal protection.

'Heat accumulation element' is generated since the profile is hollow.
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I/H PROFILES
I/H profiles are meshed as shown in figure 3.4.1.3.

The mesh refinement in the upper flange, web and the lower flange are controlled by the user.

|-PROFILE

]

Structural Beam Element Heat Transfer Elements

Figure 3.4.1.3 Heat transfer element mesh for I/H - Sections
The heat transfer elements belonging to I/H profiles have 2 outsides.
Both outsides are exposed to the actual fire scenario.

If insulation is prescribed for I/H members, both surfaces of the heat transfer elements are ‘covered'
with the actual thermal protection.

'Heat accumulation element' is not generated since the profile is open.
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PLATE/SHELL

4 node plate- and shell elements are meshed as shown in figure 3.4.1.4.
The mesh refinement in the two directions are controlled by the user.

@ ]

./

\

\

/
/ — -

Structural Membrane / Shell Element Heat Transfer Elements

Figure 3.4.1.4 Heat transfer element mesh for 4 node plate and shell elements

The heat transfer elements belonging to plate/shell elements have 2 outsides.

Both outsides are exposed to the actua fire scenario.

If insulation is prescribed for plate/shell elements, both surfaces of the heat transfer elements are
‘covered' with the actual thermal protection.

'Heat accumulation element’ is not generated since the element is open.
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34.2 Linearization of temperaturefield

In the integrated system for fire analysis the output from the temperature analysis module will represent
agenera non-uniform temperature distribution in the structure considered. Depending on the heating
conditions, structural geometry and insulation, complex temperature configurations may occur.

Asthe response calculations in USFOS is based on asimplified linear temperature distribution, a
transformation of the "true" temperature state is required prior to the structural response calculation, in
order to represent the thermal expansion forcesin arealistic manner.

This section discusses a ssimple way to process the results from a detailed temperature analysis, and
produce atemperature load file which isinput to USFOS for the collapse analysis.

The cross section temperature distribution may be expressed as:

t(xy.2) =ty + t(xy2) = t, + B,;z + B,y

A

T L 7T

I :
yE B

=y

Figure 3.4.2.1 Cross section temperature distribution

The proposed approach is to find an equivalent temperature state, characterized by the parameters AT,
AB,, AB,, which produces the same increment in thermal expansion forces as the true temperature
distribution calculated by FAHTS.

The equivalent nodal expansion forces for the beam element due to the incremental temperature change
is by use of the potential energy approach found as /USFOS Theory/:

L

ffE((—O(,At)(ﬁu,x + V'xév’x + W'xéw'x)
0A
L

+ foncAtydAév,xxdx
0A

L
+ EaAt dAdw, dx

The calculation of the equivalent temperature change is based on the following equations:
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L L
ESIZABIN 80X ffE(x,y,z)At(x,y,z)-y-N 6 dAdx
0 0A

L
ffE(x,y,z) At(xy,z)-z-N®,_dAdx
0A

L
ESIyABfNe,Xde
0

L

L
ESAAﬁfN u’XdX - ffE(X'y’Z)At(le’Z)'N u’didX
0 0A

From these equations the equivalent AB,,, AB,, and AT, may be calculated.

N denotes the beam interpolation function.
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3.5 HEAT SOURCES

351 Element Flux

Prescribed element flux may be defined by specifying a heat flux to be applied to all heat transfer
element belonging to the specified structural element(s).

The heat flux is specified in the actua units.

35.2 Nodal Boundary Temperature

Prescribed (forced) node temperatures may be defined by specifying the actual temperature to be applied
to the structural node(s). All nodes in the heat transfer model belonging to elements connected to the
defined node(s) are given the prescribed temperature which is kept constant through the simulation.

In figure 3.5.2.1 the marked nodes in the heat transfer model will be assigned the prescribed temperature
of the structural node no. 1.

Figure3.5.2.1
Prescribed node temperatures
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353 Time dependent Environmental temperature

By specifying a time dependent environmental gas temperature, the user may define a specific fire
scenario.

All surfaces, (outsides) of the heat transfer elements will be exposed to this heat 'loading'.

The heat fluxes are calculated according to Sect. 3.2.4.

The emissivity coefficient of the gasis set equal to 1.

interpolated

Temperature

»

T Time

Figure 3.5.3.1 Time dependent environmental temperature

354 Time dependent Concentrated Source

The user may apply a prescribed concentrated source defined by its location and energy emittance.
The heat rays are emitted in al directions, and the heat flux received by the individual heat transfer
elementsis calculated on basis on:

E

g = ——c0s(6)
4rr;
where
E : Total energy emittance from the source
ri . Distance between source and element midpoint
0 : Angle between the ray and the element surface normal

The source may be defined time dependent.

Figure 3.5.4.1 Time Dependent Concentrated Source
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355 Time dependent Line Source
The user may specify aline-source defined by its location, shape and energy emittance.
The global coordinates of 'end' 1 and 'end’ 2 are given together with the energy emittance ( Jm ) at the two

ends which may be different. The shape is defined by the diameter of the 'cylinder/cone’ at end 1 and end
2.

Theline source is simulated by n discrete sources each with energy emittance:

AE=AL *e

where:
AL : Distance between discrete sources = L/(n-1)
e : Specified energy emittance per length unit

The end sources are emitting 50% less energy than the rest.

Contribution from all n sources are calculated similar to the Concentrated Sour ce, (see sect 3.5.4) and
accumulated as follows:

Q = E q.( Ei,ri,ﬁi )

n
i=1

Figure 3.5.5.1 Line source simulated by discrete sources
If aheat transfer lementsis located inside the cylinder-surface, the element is assigned a flux with same
intensity athe flux at the cylinder-surface. No reduction of the flux due to surface orientation vs. location
of the source is accounted for, ( cos( 0 ) isset equal to 1.0).

The line-source may be defined time dependent.
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3.5.6 KAMELEON/FIREINT interface

Each finite element in the heat transfer model are treated individually by the KAMELEON / FIREINT
interface.

Based on the element mid coordinates, the surface normal, the current surface temperature and the thermal
properties of the surface, the interface routine cal culates the resulting heat flux.

Thefinite element hasto be located inside the calculation domain of the fire smulation. The computational
domain grid, gas velocities, temperatures and the gas absorption coefficients are read from files written by
the fire smulation program.

The gas absorption coefficients are computed by the fire ssimulation code based on the concentrations of
CO,, H,0 and soot and by the current gas temperature.

These files form atransient development of the fire, and the file which is nearest in time is chosen. This
means that the last file is chosen for simulation time exceeding the actua fire simulation.

Radiation:

The incoming radiation is based on "The Discrete Transfer Method for Radiation" by Shah and
L ockwood. A number of rays are sent from the surface of the element and are followed until they hit the
opposite boundary of the calculation domain. It is given the radiation intensity defined by the temperature
and the absorption coefficient of the wall point and followed back to the element surface.

The radiation intensity is increased or decreased based on the conditions in the control volumes the ray
passes through on its way back to the element.

NO=4 NO=8

Figure 3.5.6.1 Discreterays, definition of nO and n®
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Therays are distributed through a semi-sphere, where the midpoint of the element is located in the center.
The semi sphereis subdivided by dividing the angle between the element and its normal vector. Thisforms
anumber of circular lines on the semi-sphere paralel to the element surface. Each of these lines are split
into equal parts. Each ray passes through one of the points defined by this method.

Each ray represent a discrete angle. This means that a point far away from the element which is hit
represents alarger areathan a closer point. Because of this, the number of rays should be increased if the
flameislocated far away from the e ement. If the number of raysis smal, thereisalargerisk that the flame
is not hit - this means that the element will not be influenced by the flam at al - or that a small, very hot
part of the flame is hit, over-estimating the influence of the heat radiation.

The number of raysis governed by a parameter "nAccur”. Thisis split into the numbers n@, which isthe
number of subdivisions of the angle between the element surface and its normal, and n®, which is the
number of subdivisions of the circles parallel to the element surface, see figure 3.5.6.1. The formulas: n
=3* nAccur ,and n® =4* nAccur are used, (NAccur isinput from the user).

This means that the number of rays varies from 12, (nAccur = 1, minimum value),
to 4800, (nAccur = 20, maximum value).

Thesubdivisons, n® and n® aredefined in figure 3.5.6.1. From the figure it is seen that the accuracy
decreases with increasing distance between the element and the radiating source.

The outgoing radiation is computed based on the ement's current temperature and emissivity coefficient.

Convection

The convection is based on the temperature and the velocity of the gas outside the element, and on the
temperature of the element's surface. The velocity is found as the vector sum of the velocity components
in the three directions. The temperature and vel ocity are taken from the control volume in which the mid-
point of the element islocated, i.e. no interpolation takes place.

The convective heat transfer coefficient, H, is computed according to the formula:
H.=N,K,/L
where
N, : Nussat number
K,  :Thermal conductivity of air
L : Characterigtic length scale (set to 0.2)

The Nussdt number is base on aformulainvolving local Reynolds number and the Prandtl number (set to
0.707).
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357 SO - fire

By specifying a 1SO- fire a prescribed temperature development of the surrounding gasis applied
according to 1SO-834.

All surfaces, (outsides) of the heat transfer elements will be exposed to this heat 'loading'.

The heat fluxes are calculated according to Sect. 3.2.4.

The emissivity coefficient of the gasis set equal to 1.

O 1200
OGJ //
5 — "ISO-curve”
[
Q.
IS
(0]
= 600 r

300

0
0 3000 6000 9000 12000

Time, s

Figure 3.5.7.1 Gastemperature development according to |SO-834
358 HC -fire

By specifying a HC- fire a prescribed temperature devel opment of the surrounding gasis applied
according to astandard Hydro Carbon fire defined by NPD.

All surfaces, (outsides) of the heat transfer elements will be exposed to this heat 'loading'.

The heat fluxes are calculated according to Sect. 3.2.4.

The emissivity coefficient of the gasis set equal to 1.
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Figure 3.5.8.1 Standard Hydro Carbon Fire temperature devel opment
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